Действует ли сила трения на неподвижный автомобиль?

Трение в двигателе: откуда оно берется и как с ним бороться

Для качественного ремонта двигателя недостаточно знать технологии ремонта, особенности его конструкции и иметь необходимую техдокументацию, инструмент, оборудование и уметь всем этим пользоваться. Работа моториста, особенно при ремонте современных моторов, сродни творчеству, его действия могут расходиться с рекомендациями в руководствах по ремонту. Иногда приходится принимать нестандартные решения и разбираться в разного рода «высоких материях», среди которых процессы трения занимают далеко не последнее место.

Процессы трения происходят во всех без исключения движущихся парах деталей двигателя. Как любой фундаментальный процесс, трение имеет две ипостаси: с одной стороны, без него работу двигателя трудно представить (взять хотя бы резьбовые соединения, которые сразу же ослабнут), а с другой — трение наносит двигателю необратимый вред. Именно оно делает свое «черное» дело, вызывая износ деталей, из-за которого двигатель попадает в ремонт.

Кроме того, трениe оказывается причиной потери мощности двигателя, при этом увеличиваясь с ростом частоты вращения и нагрузки. Совершенно очевидно, что учет факторов трения при проектировании, изготовлении и последующем ремонте двигателя обеспечивает повышение износостойкости деталей — их способности противостоять изменению размеров при работе. А потому вопросы, связанные с трением, не оставят равнодушными ни любителей мощных моторов, ни сторонников экономичной езды.

Трение и мощность

Влияние трения на мощность (и, соответственно, экономичность) двигателя принято оценивать с помощью механического КПД:

где Ni — так называемая индикаторная (теоретическая) мощность, не учитывающая потери, Ne — эффективная (действительная) мощность, определяемая при испытаниях двигателя на стенде.
Мощность Ne меньше Ni на величину механических потерь Nm. Тогда:

Очевидно, в гипотетическом случае, когда потери отсутствуют, Nm=0, hm=1, а мощность двигателя максимальна, т.е. Ne=Ni. В действительности это невозможно — потери в двигателе есть всегда. Причем, помимо потерь на трение сопряженных деталей, выделяют еще целый ряд других потерь:
— потери на трение деталей о воздух, газ или жидкость. Такие потери (их также называют вентиляционными) возникают при движении поршней, шатунов, вращении коленвала;
— потери на привод агрегатов (масляного, водяного, топливного насосов, генератора, распределителя зажигания и др.);
— насосные потери, возникающие при очистке и наполнении цилиндров, когда поршни совершают в цилиндре так называемые насосные ходы на тактах выпуска и впуска.

В сумме все потери составляют весьма значительную величину — на их преодоление затрачивается до 20-25% мощности работающего двигателя. Причем чем больше частота вращения, тем выше абсолютная величина потерь. Со снижением числа оборотов абсолютное значение потерь мощности, естественно, снижается, но возрастает их относительная доля. На холостых оборотах вся эффективная мощность Ne идет на преодоление внутренних потерь и hm двигателя становится равным нулю, т.е. потери составляют 100%.

Разделить суммарные потери на составляющие непросто. Обычно такие данные получают при холодной прокрутке двигателя, последовательно снимая с него те или иные детали и узлы. На рабочих режимах нагрузки на детали КШМ и ЦПГ заметно выше, что вызывает изменение вклада отдельных составляющих, в первую очередь потерь на трение поршневых колец и юбок поршней о цилиндры. Однако в любом случае потери на трение сопряженных деталей в двигателе составляют не менее двух третей, из которых более половины приходится на трение поршней и поршневых колец.

Итак, получается, что двигатель мощностью 100 л.с. вполне мог бы выдать и 120 л.с., если бы не потери на трение. Другими словами, внутри самого двигателя скрыта, как некий резерв, дополнительная мощность. Весь вопрос в том, можно ли этим воспользоваться на практике.

Как снизить трение?

Очевидно, совсем «убрать» трение из двигателя невозможно. Более того, даже значительно снизить его величину оказывается достаточно большой проблемой. Хотя, если не торопиться, кое-что все-таки можно сделать.

А где и когда закладывается тот уровень потерь на трение, который двигатель конкретного автомобиля бесполезно «перегоняет» в тепло и в конечном счете рассеивает в окружающую среду? Не ошибемся, если скажем: еще при разработке двигателя. Действительно, от того, насколько грамотно сконструирован мотор, зависят его параметры, включая уровень потерь.

Начнем с цилиндропоршневой группы, точнее, с усилий, действующих на поршень. Например, в ВМТ, как известно, происходит перекладка поршня — изменение направления действия сил с одной стороны юбки на другую. При этом сгорание топлива приводит к возрастанию силы давления газов Р, передаваемой на соединение пальца с поршнем и шатуном. Это вызывает и рост силы трения Ртр в соединении согласно известной формуле

Ртр=kР, где k — коэффициент трения.

Смотрим дальше — вблизи ВМТ нижняя головка шатуна перемещается на шатунной шейке в направлении, перпендикулярном оси шатуна: фактически шатун быстро поворачивается на поршневом пальце. Но там резко выросла сила трения! Значит, поршень будет стремиться повернуться на пальце вместе с шатуном, со всей силой вдавливаясь юбкой в стенку цилиндра.

Здесь действует закон — чем больше сила давления юбки на стенку, тем выше и сила трения юбки. И теперь надо приложить немало сил, чтобы двигать поршень вниз. Короче, затратить мощность, чтобы преодолеть силы трения.

Можно ли бороться с описанным явлением? Да, борются, как могут — к примеру, смещают ось пальца на поршне от оси цилиндра в сторону, противоположную движению нижней головки шатуна. В этом случае появляется компенсирующий разворачивающий момент: сила давления газов действует на плечо, равное смещению оси пальца, и стремится развернуть поршень в направлении, противоположном «перекладке», тем самым уменьшая давление юбки на стенку цилиндра.

И все бы хорошо, если бы не вмешивались силы инерции: поворот шатуна на шатунной шейке при опоре на палец приводит к появлению на поршне дополнительной боковой силы. Не отстает и сам поршень — его торможение и ускорение вблизи мертвых точек также вызывает дополнительную нагрузку на палец (и, соответственно, на юбку). Причем все эти нагрузки повышаются с ростом частоты вращения.

Дальнейшие действия конструкторов понятны: если снизить массу вращающихся и поступательно движущихся деталей, можно уменьшить силы инерции и связанную с ними силу давления юбки на стенку цилиндра. Это особенно важно для современных высокооборотных двигателей. И именно это обстоятельство заставило в конечном счете перейти от традиционных еще в 70-х годах тяжелых и высоких поршней и шатунов к легким ажурным конструкциям конца 90-х — волна всеобщего укорочения юбок поршней, уменьшения длины и диаметра пальцев, длины и сечений стержня шатунов прокатилась от Японии через Европу в Америку. Конечно, не обошлось без «жертв» — для воплощения этих идей потребовалось улучшить и материалы, и технологию производства. Однако «игра стоила свеч».

Еще один относительно новый способ снижения трения — нанесение на юбку поршня специального антифрикционного покрытия (чаще используют графит, реже — дисульфид молибдена). Такое покрытие хорошо работает в режиме так называемого полужидкостного трения, когда происходит соприкосновение поверхностей по вершинам микронеровностей.

При движении поршня с большой скоростью снижению трения способствует и другое решение — специальный гидродинамический микропрофиль юбки в виде микрорезьбы с шагом 0,2-0,5 мм, глубиной впадин 0,005-0,01 мм и углом профиля 165-170о. Именно так удается добиться «всплытия» юбки на масляной пленке.

Возможность снижения потерь на трение заложена и в поршневых кольцах. Опыт показывает, что переход на тонкие поршневые кольца малой высоты позволяет у высокооборотных двигателей снизить не только трение, но и такие параметры, как прорыв газов и расход масла. Именно эти преимущества обусловили за последние 10-15 лет постепенное уменьшение высоты колец: до 1,0-1,2 мм у компрессионных и до 2,0-2,5 у маслосъемных.

Но вернемся к трению в других узлах движения. Еще одна заметная составляющая потерь находится в газораспределительном механизме. В самом деле, жесткие пружины клапанов нелегко продавить, и чем больше усилия, тем выше потери мощности на привод ГРМ. Выход один — уменьшение жесткости пружин. Но само по себе это невозможно — на высоких частотах вращения клапаны будут «зависать» в открытом положении. Остается уменьшить массу клапанов и толкателей.

Именно этот путь снижения потерь постепенно реализуется с конца 80-х годов. Так, диаметр стержней клапанов в «двухклапанных» головках уменьшился с 8-11 мм до 6,5-8 мм, а в многоклапанных — до 5,5-6 мм и даже до 5 мм. Кстати, переход на многоклапанные головки, как известно, позволил значительно улучшить очистку и наполнение цилиндров, снизив тем самым насосные потери.

Конструкторы не обошли вниманием и подшипники. На смену широким шейкам и таким же вкладышам коленчатого вала пришли узкие — ширина подшипников на некоторых двигателях уменьшилась до 15-17 мм, что заметно снизило потери на трение.

Однако конструктивными мероприятиями способы снижения потерь в двигателях не исчерпываются. Немало можно добиться правильным выбором технологии производства, кое-что можно сделать в эксплуатации, а выполняя ремонт, важно не превысить тот уровень потерь, который был задан производителем. Кроме того, в борьбе за снижение трения нельзя забывать и об износе деталей, чтобы не потерять ресурс.

Действует ли сила трения на неподвижный автомобиль?

Еще один вид сил, с которыми имеют дело в механике, — это силы трения.

Роль силы трения в природе и технике.

Роль силы трения в природе.

Посмотрите вокруг себя. Скажите, где вы наблюдали в природе проявление силы трения? Видите пи вы полезное действие сил трения?

У многих растений и животных имеются различные органы, служащие для хватания (усики растений, хобот слона, цепкие хвосты лазающих животных). Все они имеют шероховатую поверхность для увеличения силы трения.

Роль силы трения при начале движения

Значение сил трения можно проследить на примере движущегося автомобиля. Сила трения F1 действующая со стороны поверхности Земли на ведомые колеса, и сила сопротивления воздуха F2 направлены назад и способны только затормозить движение. Единственной внешней силой, способной увеличить скорость автомобиля, является сила трения F3, действующая на ведущие колеса. Если бы не было этой силы, автомобиль буксовал бы на месте, несмотря на вращение ведущих колес.

Точно так же сила трения, действующая на ступни ног, сообщает нашему телу ускорение, необходимое для того, чтобы начать движение или остановиться.

Работа двигателя, приводящего во вращение ведущие колеса, и усилия мышц ног вызывают появление сил трения.

Препятствуя проскальзыванию, сила трения совершает полезное дело, ускоряя машину или наше собственное тело. Но без усилия со стороны двигателя или мышц ног увеличение скорости за счет силы трения невозможно.

Таким образом, с одной стороны, нужно принимать все меры к уменьшению сил трения, препятствующих движению, смазывая трущиеся части двигателя и придавая машине форму, при которой сопротивление воздуха минимально, а с другой стороны, приходится увеличивать полезное трение, посыпая, к примеру, дорогу песком в гололед.

Читайте также  Как вытянуть порог на автомобиле своими руками?

Роль силы трения в технике.

Зачем на губках тисков и плоскогубцев делают насечки? Для чего на автомобильных шинах делают рельефный рисунок (протектор)? В технике сила трения имеет большое значение. Во всех машинах из-за трения нагреваются и изнашиваются движущиеся части. Для уменьшения трения соприкасающиеся поверхности делают гладкими, между ними вводят смазку. Чтобы уменьшить трение вращающихся валов машин и станков, используют подшипники. Подшипники бывают шариковые и роликовые. Простейший подшипник состоит из внешнего кольца и внутреннего кольца. Внутреннее кольцо изготавливают из твердой стали, насаживают на вал. Наружное кольцо закрепляют в корпусе машины. При вращении вала внутреннее кольцо катиться на шариках или роликах, находящихся между кольцами.

Из опыта известно, что всякое тело, движущееся по горизонтальной поверхности другого тела, при отсутствии действия на него других сил с течением времени замедляет свое движение и в конце концов останавливается. Это можно объяснить существованием силы трения, которая препятствует скольжению соприкасающихся тел друг относительно друга. Силы трения зависят от относительных скоростей тел. Силы трения могут быть разной природы, но в результате их действия механическая энергия всегда превращается во внутреннюю энергию соприкасающихся тел.Различают внешнее (сухое) и внутреннее (жидкое или вязкое) трение. Внешним трением называется трение, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении.

Далее будем рассматривать внешнее трение.

Виды трения.

а) силу трения покоя — это та максимальная сила, которую надо приложить, чтобы сдвинуть тело с места;

б) силу трения скольжения — это та сила, которую надо преодолевать при скольжении одного тела по поверхности другого;

в) силу трения качения — это та сила, которую надо преодолевать при качении одного тела по поверхности другого.

1. Сила трения покоя.

Сила трения начинает действовать на тело, когда его пытаются сдвинуть с места. Попробуйте сдвинуть пальцем лежащую на столе толстую книгу. Книга будет оставаться на месте до тех пор, пока действующая на нее сила не достигнет определенного значения. Факт этот совершенно привычный, но, если вдуматься, достаточно странный и непонятный. Ведь что это значит? Вы приложили к книге некоторую силу, направленную, скажем, вдоль поверхности стола, а книга остается в покое. Следовательно, между книгой и поверхностью стола возникает сила, направленная против той силы, с которой вы действуете на книгу, и в точности равная ей по модулю. Вы с большей силой толкаете книгу, но она по-прежнему остается на месте. Значит, и сила F трения настолько же возрастает. Силу трения, действующую между двумя телами, неподвижными относительно друг друга, называют силой трения покоя.

Если внешняя сила F меньше произведения μN, то тело не будет сдвигаться — началу движения, как принято говорить, мешает сила трения покоя. Тело начнет движение только тогда, когда внешняя сила F превысит максимальное значение, которое может иметь сила трения покоя.

Трение покоя – сила трения, препятствующая возникновению движению одного тела по поверхности другого.

Направление и точка приложения.

Она действует в направлении, противоположном направлению возможного относительного движения. Однако, при движении тела в жидкости или газе сила трения покоя равна нулю.

В 1779 году французский физик Кулон установил, от чего зависит максимальная сила трения покоя. Оказалось, что сила трения покоя зависит от того, с какой силой прижимаются друг к другу соприкасающиеся предметы. Также было установлено, что трение покоя зависит от материала соприкасающихся поверхностей.

Примером силы трения покоя может служить эскалатор со стоящим на нем человеком. Также эта сила проявляется в забитом в доску гвозде, завязанном банте или шнурке и т.д.

Максимальная сила трения покоя в простейшем приближении:

, μ где — коэффициент трения покоя, N — сила нормальной реакции опоры.

2. Сила трения скольжения

Если тело скользит по какой-либо поверхности, его движению препятствует сила трения скольжения.

Сила трения скольжения — силы, возникающие между соприкасающимися телами при их относительном движении.

Определяется сила трения по формуле: ,

Коэффициент μ зависит от материала и качества обработки соприкасающихся поверхностей и не зависит от веса тела. Коэффициент трения определяется опытным путем.

Направление и точка приложения. Сила трения скольжения всегда направлена противоположно движению тела. При изменении направления скорости изменяется и направление силы трения.

Сила приложена в точке соприкосновения двух поверхностей.

Так как тело представляем в виде материальной точки, силу можно изображать с центра.

3. Сила трения качения

Если тело не скользит, а катится по поверхности, то трение называется трением качения. При движении колес вагона, автомобиля, при перекатывании бревен или бочек по земле проявляется сила трения качения. Сила трения качения меньше силы трения скольжения.
Сила, возникающая при качении тела по поверхности без проскальзывания, называется силой трения качения.

Вывод: В некоторых случаях трение полезно (без трения невозможно было бы ходить по земле человеку, животным, двигаться автомобилям, поездам и т.д.), в таких случаях трение усиливают (посыпают дорожки песком – зимой). Но в других случаях трение вредно. Например, из-за него изнашиваются трущиеся детали механизмов, расходуется лишнее горючее на транспорте и т.д. Тогда с трением борются, применяя смазку («жидкостную или воздушную подушку») или заменяя скольжение на качение (поскольку трение качения характеризуется значительно меньшими силами, нежели трение скольжения).

Силы трения, в отличие от гравитационных сил и сил упругости, не зависят от координат относительного расположения тел, они могут зависеть от скорости относительного движения соприкасающихся тел. Силы трения являются внешними силами.

Контрольное задание.

1. Составить план обобщенного характера

План изучения величин: Сила трения

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Kvant. Трение покоя

Черноуцан А. И. Сила трения покоя //Квант. — 1990. — № 11. — С. 37-39,42.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Содержание

  • 1 Неподвижное тело
  • 2 Тело на движущейся тележке
  • 3 Тело на вращающейся платформе
  • 4 Колесо на наклонной плоскости
  • 5 Разгон покоящегося автомобиля
  • 6 Машина на повороте

Как мы обычно решаем задачи по динамике? Делаем чертеж, изображаем силы и пишем уравнения второго закона Ньютона, проектируя все силы и ускорения на выбранные оси. Чтобы решить полученные уравнения, к ним необходимо добавить формулы, отражающие закономерности, которым подчиняются действующие на тела силы. Например, вместо величины силы тяжести мы подставляем mg (m — масса тела, g — ускорение свободного падэния), вместо силы упругости — kx (k — жесткость, x — величина упругой деформации), силы трения скольжения — μN (μ — коэффициент трения, N — сила нормальной реакции). Еще на стадии составления чертежа мы опираемся на правила для определения направления сил: сила тяжести всегда направлена вниз, сила трения скольжения — против относительной скорости тела и поверхности и т. д.

Однако не все силы имеют свои законы. Так, силу нормальной реакции или силу натяжения нити нам удается определить только благодаря тем ограничениям, которые они накладывают на движение тел. Сила реакции, например, возникает ровно такой величины, чтобы обеспечить движение тела точно вдоль поверхности.

Аналогичными свойствами обладает и известная вам сила трения покоя. Рецепт для определения этой силы выглядит примерно так: сила трения покоя всегда имеет такие величину и направление, чтобы обеспечить покой тела относительно поверхности, по которой оно может двигаться. Эта сила иногда доставляет нам большие неприятности. Первые трудности возникают уже при изображении этой силы на чертеже. Про ее направление известно лишь одно — она направлена по касательной к поверхности. Но в какую сторону? Это не всегда ясно. Кроме того, при решении задач необходимо проверять, что получившееся значение силы трения лежит в допустимых пределах (0 ≤ FтрμN); в противном случае начнется проскальзывание. И последнее: сила трения покоя выступает иногда в столь незнакомом обличии (например, в виде силы тяги поезда или машины), что порой бывает трудно ее даже распознать.

Рассмотрим несколько конкретных примеров.

Неподвижное тело

Пусть на тело действуют несколько сил, но при этом оно остается неподвижным. Это означает, что сила трения покоя имеет такие величину и направление, что сумма всех сил равна нулю. Какие же именно?

В простейшем случае (рис. 1) ответ очевиден[

vec F_ = -vec F]. Если тело лежит на наклонной плоскости с углом α, сила трения направлена вверх вдоль плоскости и равна (

F_ = mg sin alpha) (m — масса тела). Тело не соскальзывает в том случае, если (

F_ le mu N = mu mg cos alpha), т. е. если tg αμ. Теперь приложим к этому телу небольшую горизонтальную силу, направленную вдоль плоскости (рис. 2), и будем увеличивать ее модуль F. При этом (

vec F_) будет изменяться как по величине, так и по направлению. Когда величина силы трения покоя (

mu N = mu mg cos alpha), начнется проскальзывание тела, причем в сторону, противоположную направлению (

vec F_) в этот момент.

Тело на движущейся тележке

Пусть тележка разгоняется по горизонтальной плоскости с ускорением (

vec a) (рис. 3). Чтобы тело массой m, находящееся на тележке, двигалось вместе с ней, сила трения покоя должна придать телу такое же ускорение (

vec a), как у тележки. Таким образом, (

vec F_) направлена вперед и равна (

F_ = ma). Проскальзывания не будет в том случае, если (

F_ le mu N = mu mg); если же ускорение тележки превысит величину (

a_0 = mu g), тело с нее соскользнет назад. На рисунке 3 изображена также сила трения (

vec F ‘_), действующая на тележку со стороны тела по третьему закону Ньютона (

Тело на вращающейся платформе

Ускорение тела, неподвижного относительно вращающейся платформы, должно быть направлено к центру платформы. Так как сила трения — единственная горизонтальная сила, которая может сообщить это ускорение, она направлена к центру и равна (

m omega^2 r) (рис. 4, а). Если очень медленно увеличивать угловую скорость вращения платформы ω, то в тот момент, когда сила трения покоя достигнет величины (

mu N = mu mg), тело начнет соскальзывать с платформы. Если же платформа раскручивается быстро, то кроме центростремительного (или так называемого нормального) ускорения нужно учитывать еще одно ускорение, направленное вдоль скорости и отвечающее за изменение модуля скорости (так называемое тангенциальное ускорение, в случае медленного раскручивания мы им пренебрегли). Это значит, что сила трения покоя, обеспечивающая оба эти ускорения, точнее — две составляющие ускорения (оно, конечно же, всегда одно), будет направлена не строго в сторону центра, а под некоторым углом к радиусу (рис. 4, б).

Читайте также  Что обозначает awd на автомобиле?

Колесо на наклонной плоскости

Пусть колесо скатывается с наклонной плоскости, но проскальзывание между колесом и плоскостью отсутствует. Это означает, что те точки колеса, которые в данный момент соприкасаются с плоскостью, являются в этот момент неподвижными. При этом сила трения покоя имеет такую величину, чтобы обеспечивать «раскручивание» колеса (рис. 5). Если бы сила трения отсутствовала, то имело бы место не скатывание колеса, а его соскальзывание — колесо двигалось бы вдоль плоскости поступательно, без вращения.

Разгон покоящегося автомобиля

Заметим, что сила тяги мотора, разгоняющая машину, есть не что иное, как действующая на ведущие (задние) колеса сила трения покоя. На вал машины со стороны мотора через передачу действуют силы, которые пытаются повернуть колеса по часовой стрелке (рис. 6). Препятствуя проскальзыванию, и возникает сила трения покоя, направленная вперед и приводящая в движение автомобиль.

А как насчет ведомых (передних) колес — действует ли на них сила трения покоя? Да, действует, но гораздо меньшей величины, а именно такой, которая необходима для раскручивания этих колес.

Кроме этих сил, в горизонтальном направлении действует еще сила сопротивления движению, которая состоит из двух частей: силы трения качения, связанной с деформацией поверхности колеса и с неровностями на дороге, и силы сопротивления воздуха.

Машина на повороте

Пусть автомобиль совершает поворот, двигаясь с постоянной по величине скоростью. Тогда ускорение машины направлено к центру закругления, перпендикулярно скорости машины.

В эту же сторону направлена и сила трения покоя, действующая на колеса, которые катятся без проскальзывания. К сожалению, школьники часто принимают эту силу трения за силу трения скольжения (ведь автомобиль движется!) и направляют ее против скорости. Но тогда сразу возникает вопрос: а какая же сила создает центростремительное ускорение?

Интересно, что, кроме силы трения покоя, на машину и в самом деле действует сила сопротивления движению, направленная против скорости. Влияет ли она на силу трения покоя? В принципе влияет. Так как машина движется с постоянной скоростью, то сила сопротивления должна быть скомпенсирована такой же по величине силой тяги, т. е. дополнительной силой трения покоя, направленной вперед по ходу движения. Это значит, что результирующая сила трения покоя направлена под углом к радиусу (рис. 7): одна ее составляющая создает центростремительное ускорение, а другая — компенсирует силу сопротивления. На плохой дороге сила сопротивления может быть немалой, и этим обстоятельством пренебрегать нельзя. Ведь проскальзывание (и потеря управления!) произойдет в тот момент, когда именно эта полная сила трения покоя достигнет величины (

mu N = mu mg). Правда, в теоретических задачах обычно молчаливо подразумевается, что силой сопротивления можно пренебречь. Ну, а в жизни?!

Действует ли сила трения на неподвижный автомобиль?

2017-12-15
Как направлена сила трения, действующая на ведущие колеса автомобиля, при разгоне (а), торможении (б), повороте (в)? Равна ли эта сила своему максимальному значению $mu N$ ($mu$ — коэффициент трения, $N$ — сила реакции полотна дороги), и если да, то в каких ситуациях? А в каких ситуациях нет? Хорошо это, или плохо, если сила трения достигает своего максимального значения? Почему? Какой автомобиль может развивать на дороге большую мощность — передне- или заднеприводный — при одинаковой мощности мотора и почему? Считать, что масса автомобиля распределена равномерно, и его центр тяжести находится посередине.

Обсудим сначала вопрос о роли силы трения в движении машины. Представим себе, что водитель машины, стоящей на гладком-гладком льду (сила трения между колесами и льдом отсутствует), нажимает на педаль газа. Что будет происходить? Ясно, что машина ехать не будет: колеса будут вращаться, но будут пробуксовывать относительно льда — ведь трения-то нет. Причем это будет происходить независимо от мощности двигателя. А это значит, что для того, чтобы мощность двигателя использовать, нужно трение — без него машина не поедет.

Что же происходит, когда сила трения есть. Пусть сначала она очень маленькая, а водитель стоящей машины снова нажимает на педаль газа? Колеса (речь сейчас идет о ведущих колесах автомобиля, допустим это передние колеса) проскальзывают относительно поверхности (трение — маленькое), вращаясь так, как показано на рисунке, но при этом возникает сила трения, действующая со стороны дороги на колеса, направленная вперед по ходу движения машины. Она и толкает машину вперед.


Если сила трения большая, то при плавном нажатии на педаль газа колеса начинают вращаться, и как бы отталкиваются от шероховатостей дороги, используя силу трения, которая направлена вперед. При этом колеса не проскальзывают, а катятся по дороге, так, что нижняя точка колеса не перемещается относительно полотна. Иногда и при большом трении колеса пробуксовывают. Наверняка, вы сталкивались с ситуацией, когда какой-нибудь «сумасшедший водитель» так трогается при включении зеленого сигнала светофора, что колеса «визжат», а на дороге остается черный след из-за скольжения резины по асфальту. Итак, в экстренной ситуации (при резком торможении или трогании с побуксовкой) колеса скользят относительно дороги, в обычных случаях (когда на дороге не остается черного следа от стирающихся покрышек) колесо не скользит, а только катится по дороге.

Итак, если машина едет равномерно, то колеса не скользят по дороге, а катятся по ней так, что нижняя точка колеса покоится (а не проскальзывает) относительно дороги. Как в этом случае направлена сила трения? Сказать, что противоположно скорости машины — неверно, ведь говоря так про силу трения, подразумевают случай скольжения тела относительно поверхности, а сейчас у нас скольжения колес относительно дороги нет. Сила трения в этом случае может быть направлена как угодно, и мы сами определяем ее направление. И вот как это происходит.


Представим себе, что нет никаких препятствующих движению машины факторов. Тогда машина движется по инерции, колеса вращаются по инерции, причем угловая скорость вращения колес связана со скоростью движения машины. Установим эту связь. Пусть колесо движется со скоростью $v$ и вращается так, что нижняя точка колеса не проскальзывает относительно дороги. Перейдем в систему отсчета, связанную с центром колеса. В ней колесо как целое не движется, а только вращается, а земля движется назад со скоростью $v$. Но поскольку колесо не проскальзывает относительно земли, то его нижняя точка имеет такую же скорость как земля. А значит, и все точки поверхности колеса вращаются относительно центра со скоростью $v$ и, следовательно, имеют угловую скорость $omega = v / R$, где R — радиус колеса. Переходя теперь назад в систему отсчета, связанную с землей, заключаем, что при отсутствии проскальзывания между нижней точкой колеса и дорогой угловая скорость колеса $omega = v / R$, а все точки поверхности имеют разные скорости относительно земли: например, нижняя точка — нулевую, верхняя $2v$ и т. д.

А пусть водитель при таком движении машины нажимает на педаль газа. Он заставляет колесо вращаться быстрее, чем нужно при данной скорости машины. Колесо стремится проскользнуть назад, возникает сила трения, направленная вперед, которая и разгоняет машину (машина как бы отталкивается от шероховатостей дороги, используя силу трения). Если водитель нажимает на педаль тормоза, колесо стремится вращаться медленнее, чем нужно при данной скорости машины. Возникает сила трения, направленная назад, которая тормозит машину. Если водитель поворачивает колеса машины, возникает сила трения, направленная в сторону поворота, которая машину поворачивает. Таким образом, управление машиной — разгоном, торможением, поворотом — основано на правильном использовании силы трения, причем, конечно, подавляющее большинство водителей об этом даже не догадываются.

Ответим теперь на вопрос: равна ли эта сила своему максимальному значению? Вообще говоря, нет, поскольку нет скольжения колеса относительно дороги, а сила трения равна максимальному значению при скольжении. В покое сила трения может принимать любые значения от нуля до максимального $mu N$, где $mu$ — коэффициент трения; $N$ — сила реакции опоры. Поэтому если мы разгоняемся (сила трения направлена вперед), но хотим увеличить темп разгона, мы сильнее нажимаем на педаль газа, и увеличиваем силу трения. Аналогично, если мы тормозим (сила трения направлена назад), но хотим увеличить степень торможения, мы сильнее нажимаем на тормоз и увеличиваем силу трения. Но ясно, что ее можно увеличить и в том и в другом случае, если она не была максимальной! Таким образом, для управления машиной сила трения не должна равняться максимальному значению, и эту разность мы используем для совершения тех или иных маневров. И любой водитель (даже если он ничего не знает про силу трения, а таких, конечно, подавляющее большинство) интуитивно чувствует, есть ли у него резерв силы трения, «далеко» ли машина от пробуксовки, и есть ли возможность ей управлять.

Тем не менее, есть одна ситуация, когда сила трения равна своему максимальному значению. Эта ситуация называется заносом. Пусть водитель резко затормозил на скользкой дороге. Машина начинает скользить по дороге, это состояние движения и называется заносом. В этом случае сила трения направлена противоположно скорости (назад) и равна своему максимальному значению. Это ситуация очень опасна, ведь машина АБСОЛЮТНО неуправляема. Мы не можем повернуть (хоть как-то, хоть чуть-чуть), ведь для поворота нам нужна сила трения, направленная в сторону поворота, а в нашем распоряжении ее нет — сила трения максимальна и направлена назад. Мы не можем увеличить скорость торможения (невозможно увеличить силу трения — она и так максимальна), не можем (даже если бы мы захотели этого в такой ситуации) ускориться. Мы не можем ничего! Ситуация осложняется еще и тем, что в состоянии заноса машину никто не «держит» на дороге. Почему машина в обычных условиях не съезжает в кювет, ведь полотно дороги всегда делается покатым к обочинам, чтобы стекала вода? Ее держит сила трения, а вот если машина скользит (занос) сила трения направлена противоположно скорости и никак иначе. Поэтому любое «боковое» возмущение — покатость дороги, небольшой камень под одним из колес — могут развернуть или сбросить машину на обочину. Никогда не допускайте заноса1.

Теперь сравним мощность, которую могут развивать на дороге передне- и заднеприводной автомобили с одинаковым мотором. Очевидно, что мощность, которую может развивать автомобиль на дороге, зависит не только от его двигателя, но и от того, как автомобиль «использует» силу трения. Действительно, в отсутствие силы трения автомобиль стоял бы на месте (с вращающимися колесами) независимо от мощности двигателя (вращающего эти колеса). Докажем, что заднеприводные автомобили мощнее переднеприводных при одинаковой мощности мотора и оценим отношение мощностей, которые может развивать двигатель, разгоняя машину на дороге (при условии, что мощность самого двигателя может быть очень большой).

Читайте также  Сколько пассажирских мест в легковом автомобиле?


Разгоняет автомобиль сила трения, действующая на ведущие колеса, а она не может превышать значения $mu N$ ($N$ — сила реакции). Поэтому чем больше сила реакции, тем больших значений может достигнуть разгоняющая сила трения (а нажатие на педаль газа в ситуации, когда сила трения достигла максимума, приведет только к проскальзыванию и к заносу, но не к увеличению мощности, которую развивает двигатель). Найдем силы реакции для задних и передних колес машины. Силы, действующие на машину при разгоне, показаны на рисунках (на правом — для заднеприводной, на левом — для переднеприводной). На машину действуют: сила тяжести, силы реакции и сила трения. Поскольку машина движется поступательно, сумма моментов всех сил относительно ее центра тяжести равна нулю. Поэтому, если центр тяжести машины находится точно посередине машины, расстояние между задними и передними колесами $l$, а высота центра тяжести над дорогой $h$, условие равенства нулю суммы моментов относительно центра тяжести дает (при условии, что машина движется, развивая максимальную мощность на максимуме силы трения):

$N_ <1>frac <2>= N_ <2>frac <2>+ F_ <тр>h = N_ <2>frac <2>+ mu N_ <2>h$, (1)

$N_ <1>frac <2>= N_ <2>frac <2>+ F_ <тр>h = N_ <2>frac <2>+ mu N_<1>h$, (2)

где $mu$ — коэффициент трения. Учитывая, что и в том и в другом случае $N_ <1>+ N_ <2>= mg$, из (1) найдем силу реакции для передних колес в случае переднеприводного автомобиля

и из (2) силу реакции задних колес в случае заднего привода

(здесь (пп) и (зп) — передний и задний привод). Отсюда находим отношение сил трения, разгоняющих передне- и заднеприводную машину, и, следовательно, отношение мощностей, которые может развивать на дороге их двигатель

Для значений $l = 3 м, h = 0,5 м$ и $mu = 0,5$ имеем из (5)

Физика. Тематические тесты (стр. 11 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Г. Замена трения скольжения трением качения.

2. При помощи динамометра ученик перемещал равномерно де­ревянный брусок массой 200 г по горизонтально расположен­ной доске. Каков коэффициент трения, если динамометр показы­вал 0,6 Н?

1. Когда возникают силы трения качения?

А. Когда одно тело катится по поверхности другого.

Б. При попытке сдвинуть одно из соприкасающихся тел.

В. Когда соприкасаю­щиеся тела, движутся относительно друг друга.

2. Вес деревянного ящика 400 Н. Чтобы его сдвинуть с места, по­требовалось приложить силу 200 Н. Определите коэффициент трения.

1. Какой вид трения возникает между приводным ремнем и шки­вом при его вращении?

Б. Трение качения.

В. Трение скольжения.

2. Коэффициент трения между железной осью и бронзовым вкла­дышем подшипника без смазки равен 0,18. Сила, прижимающая вкладыш, 10000 Н. Какова в этом случае сила трения?

1. Когда возникают силы трения покоя?

А. Когда одно тело катится по поверхности другого.

Б. При попытке сдвинуть одно из соприкасающихся тел.

В. Когда соприкасаю­щиеся тела, движутся относительно друг друга.

2. Определите силу тяги, развиваемую тепловозом при равномер­ном движении по горизонтальному пути, если коэффициент трения 0,03, а сила давления тепловоза на рельсы 25·106 Н.

1. Почему коэффициент трения — безразмерная величина?

А. Он зависит от того, из каких материалов сделаны оба трущихся тела.

Б. Он зависит от того, как обработаны поверхности трущихся тел.

В. Он определяется отношением силы трения к силе давления.

2. Брусок тянут по столу, прикладывая горизонтальную силу 1 Н. Какова масса бруска, если он движется равномерно и коэффи­циент трения между бруском и столом равен 0,2?

1. В каком случае трение полезно?

А. При перемещении грузов перетаскиванием.

Б. При движении транспортных средств на колесном ходу.

В. При скатывании лыжника с трамплина.

2. Судно буксирует три баржи, соединенные последова­тельно одна за другой. Сила сопротивления воды для первой баржи 9000 Н, для второй 7000 Н, для третьей 6000 Н. Сопро­тивление воды для самого судна 11 кН. Определите силу тяги, развиваемую судном при буксировке этих барж, считая, что баржи движутся равномерно.

1. Каким способом нельзя увеличить силу трения?

А. Увеличением шероховатости соприкасающихся поверхностей.

Б. Применением материалов соприкасающихся тел с меньшим коэффициентом трения.

В. Увеличением силы, сжимающей соприкасающиеся тела.

2. На движущийся автомобиль в горизонтальном направ­лении действуют сила тяги двигателя 1,25 кН, сила трения 600 Н и сила сопротивления воздуха 450 Н. Чему равна равно­действующая этих сил?

1. На транспортере равномерно дви­жется ящик с грузом (без скольжения). Куда направлена сила трения покоя между лентой транспортера и ящиком, когда ящик движется го­ризонтально?

А. Вниз вдоль транспортера.

В. Вверх вдоль транспортера.

2. В работающем электрическом двигателе угольная щетка прижимается к медному коллектору с силой 5 Н. Коэффициент трения скольжения угля по меди 0,25. Определить силу трения.

1. Когда возникают силы трения скольжения?

А. При попытке сдвинуть одно из соприкасающихся тел.

Б. Когда одно тело катится по поверхности другого.

В. Когда соприкасаю­щиеся тела, движутся относительно друг друга.

2. Сани со стальными полозья­ми перемещают равномерно по льду, прилагая горизонтальное усилие 2 Н. Каков вес саней? Коэффициент трения скольжения стали по льду 0,02.

1. Действует ли сила трения на неподвижный автомобиль?

В. Действует только сила трения покоя.

2. Бетонную плиту весом 120 кН равномерно тащат по гори­зонтальной поверхности земли. Гори­зонтальная сила тяги 54 кН. Определить коэффициент трения.

1. Идущий человек ускоряет ход. Какая сила вызывает изменение
скорости человека?

А. Сила мышц человека.

В. Гравитационная сила.

2. Упряжка собак при движении саней по снегу может действовать с максимальной силой 0,5 кН. Какой массы сани с грузом может перемещать упряжка, двигаясь равномерно, если коэффициент трения равен 0,1? Ускорение свободного падения принять равным 10 м/с2.

1. Может ли сила трения, действующая на тело, находящееся на
наклонной плоскости, быть направлена вдоль склона вниз?

В. Это зависит от угла склона.

2. Какую наименьшую силу следует приложить к стальному бруску массой 1 кг, находящемуся на горизонтальной деревянной поверхности, чтобы сдвинуть его с места? Коэффициент трения стали по стали 0,13. Ускорение свободного падения принять равным 10 м/с2.

1. Может ли сила трения разгонять тело?

Б. Это зависит от вида трения.

2. Сани со стальными полозья­ми перемещают равномерно по льду, прилагая горизонтальное усилие 2 Н. Каков вес саней? Коэффициент трения скольжения стали по льду 0,02.

1. Какая сила разгоняет автомобиль, когда водитель нажимает педаль газа?

А. Сила трения качения.

Б. Сила трения покоя.

В. Сила трения скольжения.

2. В работающем электрическом двигателе угольная щетка прижимается к медному коллектору с силой 5 Н. Коэффициент трения скольжения угля по меди 0,25. Определить силу трения.

1. Зачем в гололедицу тротуары посыпают песком?

А. Для увеличения силы трения покоя.

Б. Для увеличения силы трения скольжения.

В. Для увеличения коэффициента трения.

2. На движущийся автомобиль в горизонтальном направ­лении действуют сила тяги двигателя 1,25 кН, сила трения 600 Н и сила сопротивления воздуха 450 Н. Чему равна равно­действующая этих сил?

1. На транспортере равномерно дви­жется ящик с грузом (без скольжения). Куда направлена сила трения покоя между лентой транспортера и ящиком, когда ящик опускается?

А. Вниз вдоль транспортера.

Б. Вверх вдоль транспортера.

2. Судно буксирует три баржи, соединенные последова­тельно одна за другой. Сила сопротивления воды для первой баржи 9000 Н, для второй 7000 Н, для третьей 6000 Н. Сопро­тивление воды для самого судна 11 кН. Определите силу тяги, развиваемую судном при буксировке этих барж, считая, что баржи движутся равномерно.

1. Какая сила трения возникает при движении каран­даша в случае, указанном на рисунке? Куда направ­лена сила трения, действующая на карандаш, относительно оси карандаша?

А. Сила трения покоя. Вниз вдоль оси.

Б. Сила трения скольжения. Вправо вдоль оси.

В. Сила трения качения. Вправо поперек оси.

2. Брусок тянут по столу, прикладывая горизонтальную силу 1 Н. Какова масса бруска, если он движется равномерно и коэффи­циент трения между бруском и столом равен 0,2?

1. Тележка с грузом движется.

Какой вид тре­ния возникает между столом и колесами?

2. Определите силу тяги, развиваемую тепловозом при равномер­ном движении по горизонтальному пути, если коэффициент трения 0,03, а сила давления тепловоза на рельсы 25·106 Н.

1. Кирпичи не скатываются вниз. Какая сила удерживает их в состоянии покоя?

А. Сила трения покоя.

В. Сила трения скольжения.

2. Коэффициент трения между железной осью и бронзовым вкла­дышем подшипника без смазки равен 0,18. Сила, прижимающая вкладыш, 10000 Н. Какова в этом случае сила трения?

1. Кирпич не скатывается вниз. На каком из рисунков правильно изображены силы, действующие на него?

2. Вес деревянного ящика 400 Н. Чтобы его сдвинуть с места, по­требовалось приложить силу 200 Н. Определите коэффициент трения.

1. Колесо автомобиля буксует. Куда направлена сила трения сколь­жения между буксующим колесом и до­рогой, которая действует на колесо?

2. При помощи динамометра ученик перемещал равномерно де­ревянный брусок массой 200 г по горизонтально расположен­ной доске. Каков коэффициент трения, если динамометр показы­вал 0,6 Н?

1. На транспортере равномерно дви­жется ящик с грузом (без скольжения). Куда направлена сила трения покоя между лентой транспортера и ящиком, когда ящик поднимается?

А. Вверх вдоль транспортера.

Б. Вниз вдоль транспортера.

2. На деревянной доске лежит деревянный брусок массой 50 г. Удастся ли его сдвинуть с места, приложив к нему в горизонтальном направлении силу, равную 0,25 Н? Коэффициент трения покоя 0,5. Ускорение свободного падения принять равным 9,8 м/с2.

1. Если автобус равномерно движет­ся по горизонтальному участку пути, чему равна сила трения покоя?

В. Силе трения качения.

2. Автомобиль массой 2 т движется равномерно по горизонтальному шоссе. Найти силу тяги автомобиля, если коэффициент сопротивления качению равен 0,02. Сопротивление воздуха не учитывать. Ускорение свободного падения принять равным 10 м/с2.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: