Как работает турбина на автомобиле?

Описание и принцип работы турбонаддува двигателя

Среди всех возможных вариантов наддува двигателя внутреннего сгорания наибольшее распространение получил турбонаддув, в котором воздух подается в цилиндры при помощи специального устройства – турбокомпрессора (турбины). Вращение турбины осуществляют отработавшие газы, что позволяет существенно увеличить мощность двигателя без увеличения частоты оборотов последнего. Помимо этого, турбонаддув позволяет получать большие значения крутящего момента при небольшом расходе топлива. В сравнении с классическими конструкциями при аналогичной мощности турбированный двигатель имеет более компактные габаритные размеры.

  1. Устройство системы турбонаддува
  2. Принцип работы турбонаддува
  3. Особенности эксплуатации турбированных двигателей
  4. Виды систем турбонаддува
  5. Что такое турботаймер и для чего он необходим
  6. Достоинства и недостатки системы турбонаддува

Устройство системы турбонаддува

На практике турбонаддув применяется как на моторах, использующих дизельное топливо, так и на бензиновых. Однако наиболее часто эта система встречается именно на дизельном двигателе, поскольку для них характерна высокая степень сжатия, меньшая температура выхлопа и низкие обороты коленчатого вала. Более высокая степень сжатия обеспечивает повышение мощности турбированного двигателя и увеличивает его КПД.

В бензиновых моторах температура отработавших газов выше, что может спровоцировать эффект детонации, приводящий к быстрому износу поршневой группы. Для предотвращения этого явления необходимо использовать бензин с более высоким октановым числом, что не всегда является экономически выгодным.

Принцип работы турбины

Система турбонаддува состоит из следующих элементов:

  • Воздухозаборник;
  • Воздушный фильтр;
  • Перепускной клапан – регулирует подачу отработавших газов;
  • Дроссельная заслонка – регулирует подачу воздуха на впуске;
  • Турбокомпрессор – повышает давление воздуха во впускной системе. Состоит из турбинного и компрессорного колес;
  • Интеркулер – охлаждает воздух, способствуя лучшему наполнению цилиндров и снижению вероятности детонации;
  • Датчики давления – фиксирует давление наддува в системе;
  • Впускной коллектор – распределяет воздух по цилиндрам;
  • Соединительные патрубки – необходимы для крепления элементов системы между собой.

Принцип работы турбонаддува

Принцип работы системы турбонаддува заключается в следующем:

  • Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо.
  • Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу.
  • Компрессор сжимает воздух, поступающий из воздухозаборника, и направляет его в интеркулер.
  • В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя.

В турбокомпрессоре предусматривается возможность регулировки давления выхлопных газов на лопасти турбины с целью не допустить превышение давления наддува в системе. Это осуществляется с помощью перепускного клапана, который приводится в движение пневмо- или электроприводом. В свою очередь, управление приводом осуществляется электронным блоком управления, который считывает информацию с датчика давления.

Особенности эксплуатации турбированных двигателей

На режимах разгона автомобиля в силу инерционности системы возникает явление, получившее название “турбояма”. Сущность явления заключается в следующем:

  • Автомобиль движется с небольшой постоянной скоростью.
  • Турбина вращается в соответствующем режиме.
  • При резком нажатии на педаль ускорения в цилиндры двигателя подается больше топлива.
  • После его сгорания образуются отработавшие газы, которые с большей силой воздействуют на турбину и увеличивают мощность двигателя. Однако происходит это с некоторой временной задержкой.

Таким образом, между моментом нажатия на педаль и фактическим ускорением автомобиля присутствует некоторая временная задержка – “турбояма”. Также данное явление проявляется в виде недостатка крутящего момента на малых оборотах двигателя.

Виды систем турбонаддува

Производители разработали различные способы избавления от “турбоямы”:

  • Турбина с изменяемой геометрией. Конструкция предусматривает изменение сечения входного канала. За счет этого выполняется регулирование потока отработавших газов.
  • Два турбокомпрессора, установленных последовательно (Twin Turbo). На каждый режим работы (обороты двигателя) предусматривается свой компрессор.
  • Два турбокомпрессора, установленных параллельно (Bi Turbo). Схема разбиения на две турбины снижает инерцию системы, и турбояма становится не так ощутима.
  • Комбинированный наддув. Устройство предусматривает и механический, и турбонаддув. Первый включается при низких оборотах, второй при высоких.

Что такое турботаймер и для чего он необходим

Другой стороной инерционности системы с турбокомпрессором является необходимость снижать обороты постепенно. Нельзя резко выключать зажигание после того, как двигатель работал на высоких оборотах. Это обусловлено тем, что подшипники будут продолжать вращение, а поскольку масло не будет подаваться в систему – возникнет повышенное трение. Оно, в свою очередь, спровоцирует быстрый износ вала турбины.

Для решения этой проблемы применяется турботаймер. Это устройство устанавливается на приборной панели и подключается в цепь зажигания. После выключения зажигания ключом система запускает таймер, который глушит двигатель спустя некоторое время, давая возможность турбине снизить обороты до приемлемых значений.

Достоинства и недостатки системы турбонаддува

Подводя итоги, можно выделить плюсы и минусы использования на моторе турбонаддува. В числе достоинств:

  • увеличение мощности двигателя;
  • повышение КПД двигателя;
  • снижение расхода топлива.

К минусам можно отнести:

  • низкий крутящий момент на малых оборотах двигателя;
  • более высокая стоимость;
  • более сложное обслуживание и эксплуатация.

7 главных минусов и 2 плюса турбомоторов

Чем турбомотор отличается от атмосферного?

Атмосферный мотор засасывает воздух в цилиндры под действием разрежения, которое возникает, когда поршень движется к нижней мертвой точке. В большинстве случаев давление в цилиндре в конце хода впуска чуть ниже атмосферного. И вот с этим количеством воздуха и осуществляется рабочий цикл мотора. Наддувный двигатель получает на входе в цилиндр воздух, сжатый компрессором до определенного давления, а потому его в цилиндр войдет больше, чем у мотора со свободным всасыванием. Больше воздуха — больше кислорода, а значит, и топлива сгорит больше, и мощность при том же рабочем объеме поршневой части будет выше (или мотор компактнее при сохранении мощности).

Поскольку воздух в компрессоре подогревается, температуру перед подачей в цилиндр желательно снизить. Это делает специальный охладитель — интеркулер. Компрессоры могут использоваться разных типов — и с приводом от коленвала, и волновые обменники давления, но наиболее распространен турбонаддув. Последний способ использует энергию выхлопных газов для вращения центростремительной турбины, а сидящее на том же вале колесо центробежного компрессора обеспечивает сжатие воздуха перед подачей в цилиндры.

Как видим, конструкция наддувного мотора сложнее, чем атмосферника. Отсюда и первый недостаток турбомоторов.

1. Низкая надежность

Наддувные двигатели состоят из большего числа агрегатов, а надежность многокомпонентной системы всегда ниже, чем у более простой. Нагрузки на детали больше из-за большей литровой мощности. Да и конструкционные материалы в автомобильной промышленности используются преимущественно недорогие. Это же вам не аэрокосмическая отрасль…

К примеру, у турбокомпрессора есть система регулирования давления наддува, которая порой может заедать и отказывать. У редакционного Volkswagen Golf уже дважды при пробеге 80 000 и 100 000 км полностью теряла подвижность тяга привода клапана перепуска газов мимо турбины.

2. Недостаточный ресурс

Все мы вздыхаем по моторам-миллионникам конца прошлого века. Сейчас ресурс мотора в 400 000 км считается огромным достижением, а в прошлом он был нормой. Турбодвигатели современных автомобилей до таких пробегов не доживают. Турбокомпрессоры на бензиновых моторах редко ходят больше 150 000 км, а начавшая «хандрить» турбина вскоре может погубить и поршневую часть. Ведь турбокомпрессор может «выхлебать» весь запас моторного масла — в поддоне и поршневой части ничего не останется.

А еще многие производители с целью сэкономить «апгрейдят» атмосферные моторы до турбонаддувных, не особо заморачиваясь усилением некоторых деталей. Соответственно, высокие нагрузки на поршневую часть при небольшом усилении конструкции приводят к снижению ресурса.

3. Необходимость более частого и высококвалифицированного обслуживания

Многие производители для своих моделей с турбомоторами снизили периодичность ТО с 15 000 до 10 000 км. Так поступили, к примеру, Geely и Haval.

Наддувный мотор сложнее в обслуживании и особенно в диагностике. У него гораздо больше количество дополнительных соединений в системе турбонаддува. Потерять герметичность могут: подвод и отвод воздуха, подвод и отвод отработанных газов, системы подачи масла под давлением и его слива, а также подачи охлаждающей жидкости. Все это требует дополнительного внимания и опыта у сервисмена во время ТО.

4. Дорогой ремонт

Ремонт наддувного мотора всегда обходится дороже. Даже если турбокомпрессор в ремонтной фирме и не трогали, то прайс на восстановление двигателя все равно выше. Просто потому, что разбирать-собирать все перечисленные выше системы дольше и сложнее. А если предстоит замена турбокомпрессора, то готовьтесь выложить от 60 000 руб. Восстановление узла может потребовать половину этой суммы.

5. Обязательно применять хорошее топливо и смазки

Все современные моторы довольно требовательны к качеству топлива и моторного масла. Но если атмосферник на некачественных жидкостях «умрет» не сразу, то жизнь форсированного наддувного мотора будет измеряться минутами. Кроме того, расход даже самого дорогого масла у наддувного мотора будет выше, чем у большинства атмосферников.

Отдельного разговора требует расход топлива. Любой маркетолог, желающий продать вам машину с турбомотором, будет уверять, что она экономичнее, чем автомобиль с атмосферным двигателем. В теории так и есть. Но ведь турбомашина — это «великий провокатор». Некоторые автомобилисты сознательно выбирают турбодвигатель, чтобы ездить напористо и агрессивно. В этом случае расход будет не меньше, а даже больше, примерно на 30%, чем у спокойного водителя. Для неторопливого водителя мощность турбомашины может показаться избыточной, а повышенные затраты на содержание, (частые ТО, дорогие бензин и масло) — неоправданными.

6. Необходимость дополнительного охлаждения

Недаром многие сигнализации имеют опцию «турботаймер». Это устройство позволяет не глушить разогретый турбомотор сразу после остановки машины, а дает двигателю поработать на холостом ходу для охлаждения — прежде всего турбины. Похожий алгоритм у некоторых мощных автомобилей штатно заложен в блок управления двигателем. Без этого в остановившейся, но раскаленной докрасна турбине масло закоксуется, нарушив герметичность уплотнений. В итоге значительно вырастет расход масла на угар.

7. Проблемы с ликвидностью

Обо всех вышеперечисленных неприятностях осведомлены, в той или иной степени, многие автолюбители. Именно поэтому большинство предпочтет на вторичном рынке машину с атмосферным двигателем. А заезженные «турбозажигалки» приобретать будут, в основном, молодые поклонники всех серий «Форсажа».

Впрочем, есть у турбомоторов и неоспоримые плюсы.

1. Отличная характеристика крутящего момента

Разгон автомобиля — хоть с механической коробкой передач, хоть с автоматом — очень зависит от того, насколько быстро мотор из режима холостого хода сможет достигнуть оборотов максимальной мощности. А мощность, как известно, пропорциональна произведению оборотов коленвала на крутящий момент. Именно поэтому нужно, чтобы мотор на как можно более низких оборотах выдавал большой крутящий момент.

Наддувный мотор проектируют так, что турбокомпрессор обеспечивает довольно высокое давление наддува очень «рано», при небольших оборотах коленвала. В результате мы получаем большой крутящий момент на небольших оборотах. Далее момент увеличивать нельзя во избежание чрезмерных нагрузок на детали мотора. Начинает работать перепускной клапан, направляя часть выхлопных газов в обход турбины. Так производительность турбокомпрессора ограничивается, а на кривой крутящего момента появляется горизонтальная полка. Вот за такую характеристику турбомоторов их и любят, особенно активные водители.

2. Низкий расход топлива

У атмосферного двигателя значительная часть энергии сгоревших газов теряется вместе с горячими выхлопными газами. Наддувный двигатель использует температуру и давление выпускных газов, срабатывая их в турбине. Меньше энергии пропадает зря, значит, больше используется для движения автомобиля. Но, повторюсь, при условии спокойной манеры вождения.

Турбодвигатели совершенствуются и захватывают все новые модельные ряды автомобилей самых разных производителей на всех континентах. Вначале они оккупировали дороги старушки Европы. Япония давно и массово загружает ими внутренний рынок. США и Корея немного более сдержанны в распространении турбированных двигателей. Зато Китай в последнее время массово пересаживается на турбонаддув. Так что за наддувными двигателями будущее. Если, конечно, их не вытеснят электрокары.

  • Самые надежные двигатели (из тех, что еще продаются) мы собрали тут.
Читайте также  Куда заезжает водитель паркуя свой автомобиль?

Как работает турбина на бензиновом двигателе?

Здравствуйте, уважаемые читатели и посетители блога Автогид.ру. Сегодня в статье мы с вами разберёмся и узнаем как работает турбина на бензиновом двигателе. Тема, конечно интересная и в первую очередь для владельцев бензиновых турбированных автомобилей. Зачастую информации о принципе работы и устройстве турбины на бензиновом моторе достаточно мало или она слишком сложна для восприятия обыкновенного человека.

Использование турбины позволяет любому двигателю с малым объёмом увеличить мощность без возрастания расхода топлива и сокращения ресурса эксплуатации. После подключения турбины мотор словно получает невидимый пинок и работает значительно шустрее. Существуют особенности использования бензиновых моторов, оснащённых турбинами.

Их необходимо учитывать для продления срока службы устройства и использования двигателя машины с максимальной эффективностью. Перед тем как говорить о принципе работы турбины на бензиновом двигателе надо узнать историю её появления и широкого использования производителями автомобилей.

История появления турбированного бензинового мотора

Первые двигатели внутреннего сгорания, как и все технические первопроходцы имели очень «сырой» вид и требовали доработки. Время шло и на рынке появлялись надёжные и долговечные модели бензиновых моторов, которые радовали водителей своей неприхотливостью в обслуживании и выносливостью. Требования к моторам среди потребителей возрастали и критерии контролирующих органов ужесточались.

Первоначально развитие бензиновых моторов осуществлялось во многом по экстенсивному пути. Для увеличения мощность двигателя его объём просто увеличивался. Все было отлично если бы не возрастающий пропорционально расход топлива и количество вредных выбросов в окружающую среду. Продолжаться это больше так не могло и перед инженерами и создателями двигателей внутреннего сгорания была поставлена очень непростая задача.

Добиться увеличения мощность ДВС (двигателя внутреннего сгорания) без увеличения объёма мотора и расхода топлива. Решений было предложено большое количество, но выбрано было единственное верное направление развития моторов. Было решено работать над увеличением эффективности образования и сгорания топливно-воздушной смеси в моторе автомобиля.

Единственный верный способ увеличить эффективность сгорания смеси топлива и воздуха – это увеличить поступление воздуха в цилиндры мотора. При этом дополнительный объём воздуха должен был поступать принудительно за счёт создаваемого давления.

Дополнительное количество воздуха значительно усиливало сгорание топлива в цилиндрах мотора и тем самым высвобождая дополнительные мощности при неизменном объёме. Идея простая, но требующая реализации в виде появления устройства для нагнетания воздуха в цилиндры двигателя.

Для решения этой задачи автомобильные инженеры решили опираться на разработки авиационной промышленности. Она уже очень давно использовала турбины. Первые турбированные бензиновые моторы появились на грузовых автомобилях в тридцатых годах прошлого века. Грузовики использующие турбины прибавили в мощности и оптимизировали расход топлива.

Удачный опыт использования турбины как устройства для нагнетания массы воздуха в грузовых машинах подвиг конструкторов и инженеров автомобильной промышленности ускорить движение в этом направлении. Первые автомобили с бензиновыми моторами оснащёнными турбинами начали продаваться на территории США в 60-х годах прошлого века.

Первые модели автомобилей этого типа автолюбители из США встретили настороженно и с подозрительностью. Только через 10 лет в 70-х годах прошлого века их оценили по достоинству и начали активно использовать при создании машин со спортивным уклоном. На серийные модели автомобилей турбины устанавливали в очень малом количестве.

Это было вызвано тем, что первые модели моторов с турбинами оказались очень «прожорливыми» и имели массу прочих мелких недоработок, портящих первое впечатление. Значительный расход топлива не дал возможность наладить широкое производство машин с турбированным моторами. Значительно замедлило внедрение турбин в моторы нефтяной кризис, закончившийся увеличением цен на топливо. Люди стали больше экономить.

Лишь в конце 90-х годов после значительного улучшения конструкции турбины и бензинового мотора в целом удалось изменить ситуацию. Это стало отправной точкой начала эры развития и становления бензиновых турбированных двигателей.

Как работает турбина на бензиновом двигателе?


Турбина бензинового мотора за счёт использования компрессора принудительно нагнетает в цилиндры массу воздуха. Значительно повышается обогащение кислородом топливно-воздушной смеси и улучшается сгораемость бензина. Коэффициент полезного действия существенно возрастает. Эффективность работы мотора увеличивается при неизменно объёме.

Мощность двигателя при использовании турбины возрастает прямо пропорционально количеству сжигаемого за единицу времени бензина. Для обеспечения максимального быстрого сгорания топлива в цилиндрах мотора необходим значительный объём воздуха. Именно его в достаточном количестве направляет турбина за счёт работы компрессора. Он принудительно подаётся в цилиндры, обогащая топливно-воздушную смесь.

Если разрезать турбину бензинового мотора вдоль корпуса можно увидеть следующее рабочие элементы:

Корпус подшипников.

Служит для размещения ротора, представленного валом несущим на себе турбинные и компрессорные кольца, оборудованные лопастями. Именно они при вращении захватывают воздуха и направляют его в цилиндры мотора.

Масляные каналы.

Пронизывают корпус турбины словно кровеносные сосуды на теле человека. Служат для своевременной доставки моторного масла к трущимся и вращающимся элементам. Снижают тем самым износ рабочих элементов бензиновой турбины.

Подшипник скольжения.

Его главная задача обеспечить свободное и плавное вращение ротора турбины с его лопастями для захвата достаточного количества воздуха. Его смазку и охлаждение обеспечивает циркулирующее в турбине моторное масло.

Корпус.

Корпус турбины, имеющий форму улитки обеспечивают защиты от внешних механических воздействий рабочие элементы устройства для нагнетания воздуха.

Привод турбины бензинового мотора осуществляется за счёт подачи отработанного газа энергия которого заставляет ротор вращать лопасти. Сложного в конструкции и работе ничего нет всё понятно и достаточно просто.

При запуске бензинового мотора отработанные газы и цилиндров мотора направляются прямиком в турбину. Они приводят в движение ротор, отдавая ему свою энергию. Далее, через приёмную трубу они поступают в глушитель и выводятся в окружающую среду.

Вал ротора раскручивает колесо компрессора и лопаточное колесо. Они захватывают воздух из окружающей среды, поступающий через воздушный фильтр мотора. Он принудительно подаётся в цилиндры двигателя. Компрессор турбины может повышать давление воздуха до 80%.

Работа турбины бензинового мотора позволяет обогащённую кислородом топливно-воздушную смесь наполнять цилиндры в большом количестве. Объём мотора остаётся неизменным, но его мощность существенно возрастает. В среднем использование турбины даёт возможность увеличить мощность силовой установки машины на 20-30%.

Что необходимо знать для грамотной эксплуатации бензиновой турбины?


Для обеспечения долговечной работы турбины на бензиновом моторе не нужно экономить на количестве и качестве моторного масла. Любители пропускать интервалы замены масла в моторе рано или поздно столкнуться с проблемами и нарушениями в работе турбины. Она очень восприимчива к качеству используемого масла. Дешёвое масло не сможет обеспечить необходимый уровень трения рабочих элементов и они при интенсивном использовании автомобиля достаточно быстро придут в негодность и потребуют замены.

При покупке автомобиля, оснащённого турбиной надо обязательно выполнить замену моторного масла и прочистку всей системы. Смешивать доливая другое масло нельзя, так как оно теряет свои свойства и эффективность его работы стремится к нулю. Полная замена масла позволит избежать вредных воздействий и усилить защиту турбины бензинового мотора.

Есть некоторые особенности эксплуатации мотора, оснащённого турбиной. После длительной поездки на машине двигатель во время остановки сразу глушить не нужно. Необходимо дать ему время поработать на холостых оборотах и немножко остыть. Резкое выключение мотора создаёт температурный перепад отрицательным образом, сказывающийся на прочности и надёжности рабочих элементов турбины мотора.

Преимущества и недостатки турбированного мотора


Главным преимуществом любого бензинового мотора, оснащённого турбиной является увеличение его мощности на 20-30%. При одинаковом объёме с традиционным атмосферным ДВС его мощность выше на треть. Эффективность использования топлива существенно повышается.

Максимальный уровень сгорания топливно-воздушной смеси позволяет существенно снизить выброс загрязняющих веществ в окружающую среду. Максимальное использование турбированных моторов повсеместно настоящая мечта защитника окружающей среды. На этом преимущества турбированного мотора заканчиваются.

Турбированные моторы очень требовательны к качеству используемого топлива и моторного масла. Всё это в совокупности приводит к увеличению расходов на использование автомобиля в долгосрочной перспективе. Обслуживание турбированного мотора потребует от водителя больших расходов денежных средств.

Ремонт турбины требует использования специального оборудования и материалов. Самостоятельно его выполнить очень проблематично. Зачастую век отремонтированной турбины недолог и в конечном итоге потребуется её замена. Это может ощутимо ударить по кошельку владельца машины.

Заключение

Появление турбированных моторов является ещё одной ступенькой развития силовой автомобильных установок. Современные требования к экологической составляющей двигателя существенно ужесточаются и конкуренция между производителями машин обостряется.

Так ли страшна турбина? Как правильно ездить с турбомотором и сколько может стоить ремонт

В России панически боятся турбированных моторов, предпочитая менее мощные и эффективные «атмосферники». Разбираемся, как не «убить» турбину раньше срока и во сколько встанет ее обслуживание или замена.

В нашей прошлой публикации мы уже сравнивали турбированный и атмосферный моторы, пытаясь понять, в чем их отличие и какой из них лучше выбрать. Допустим, что вы уже приобрели машину с наддувным двигателем или вот-вот собираетесь ее купить.

Как устроена турбина?

В общем-то, турбокомпрессор устроен просто. Главная деталь — это картридж. Внутри него размещается вал, а с двух противоположных концов к этому валу прикреплены турбинные колеса. Для того чтобы вал нормально вращался и не грелся, к нему под давлением подается моторное масло. Также к картриджу идет и трубка с антифризом для дополнительного охлаждения.

По бокам к корпусу картриджа прикреплены две «улитки» — горячая и холодная, внутри которых вращаются турбинные колеса. В горячую поступают выхлопные газы, раскручивают колесо, а затем «улетают» в выхлопную трубу через боковое отверстие улитки. Турбоколесо в холодной улитке всасывает чистый атмосферный воздух из впускного тракта и гонит его под сильным давлением дальше во впускной тракт к цилиндрам мотора.

Такова общая схема турбины, и мы не будем сейчас вдаваться в тонкости конструкции и различные варианты компоновки. Впрочем, стоит упомянуть новое поколение турбин, где масло подается под более низким давлением, а вал вращается в очень дорогих и сверхпрочных шариковых подшипниках.

Будет ли турбина «есть» масло?

Как мы уже говорили, без масла турбина работать не может. Обычно для герметизации вращающихся валов используют резиновые сальники (как в двигателе и коробке передач), но никакие сальники не смогут выдержать режимы работы турбины. Рабочая температура в ней достигает тысячи градусов, а частота вращения валов — сотен тысяч оборотов в минуту. Это намного более суровые условия, чем в моторе.

Валы и втулки в турбине подогнаны друг к другу с очень высокой точностью, и за счет этого масло не должно сочиться сквозь них, если турбина исправна. Но как только зазоры увеличиваются, масло через «холодную» часть турбины засасывает во впускной коллектор двигателя вместе с нагнетаемым воздухом. В таких случаях говорят, что «турбина гонит масло».

Из-за чего это происходит?

  • Естественный износ рабочих поверхностей валов и втулок.
  • Пониженное давление масла в двигателе: турбине не хватает смазки, и она сильнее изнашивается.
  • Повышенное давление масла в двигателе: масло попросту выдавливает через щели между втулками и валами.
  • Повышенное разрежение во впускном коллекторе — масло из турбины туда засасывает. В результате двигатели, где зазоры в цилиндрах близки к идеальным, угар масла из-за неисправной турбины может достигать нескольких литров на сотню километров. Вот этого-то и боятся сторонники безнаддувных моторов.
Читайте также  Как проверить шаровую опору на автомобиле?

Каков ресурс турбины?

Здесь все очень индивидуально и зависит от стиля езды. В среднем на бензиновых двигателях ресурс турбины составляет 150 тысяч километров. На дизельных двигателях — 250 тысяч километров. Однако если ездить быстро, перекручивая двигатель и турбину, то ресурс может сократиться и до 100, и до 60 тысяч.

Как понять, что турбина просится в ремонт?

Главный признак скорой кончины турбины — синеватый дым из выхлопной трубы. Его появление означает, что в цилиндрах вместе с топливовоздушной смесью сгорает масло. Весьма вероятно, что во впуск это масло попало именно через турбину. Чтобы провести диагностику, не нужно обладать дипломом автослесаря. Достаточно иметь книжку по устройству автомобиля, где нарисовано расположение узлов под капотом, и немного свободного времени.

  • Найдите впускной патрубок, по которому воздух попадает в турбину и открутите его. Засуньте руку в «улитку» турбины и нащупайте вал, на котором закреплена крыльчатка. Покачайте его, и если есть люфт, то через щели наверняка сочится масло.
  • Найдите интеркулер и загляните внутрь. Если внутри есть масло, то турбина его «гонит». Чем больше масла, тем выше износ.

Еще иногда на приборной доске турбированных автомобилей есть указатели температуры и давления турбины. Соответственно температура не должна быть повышенной, а давление — пониженным.

Все эти советы обязательно нужно учесть, если вы покупаете турбированную машину с пробегом. Турбина — вещь дорогостоящая, и ее дефект может обернуться для вас, как для будущего владельца, крупными затратами.

Сколько стоит ремонт турбины и что в ней ремонтируется?

Когда турбина выходит из строя, можно пойти тремя путями.

Поменять турбину целиком. Чаще всего это совершенно лишняя затея, потому как масло гонит картридж, а корпуса-«улитки» остаются целыми и менять их не нужно. Замену турбины в сборе любят предлагать официальные дилеры и мультибрендовые сервисы, мастера на которых плохо разбираются в турбинах и ставят задачу получить с клиента максимум денег.

Почем? Cнятие, отсоединение трубок подачи масла и антифриза и установка турбины обратно стоит около 4 000 – 5 000 рублей.

Поменять картридж турбины. Под замену идет исключительно сам рабочий элемент турбокомпрессора — корпус с валом и крыльчатками. Поменять готовый картридж может даже мастер, который не специализируется на турбинах. Задача состоит в том, чтобы открутить несколько гаек крепежа, а потом закрутить их обратно.

Почем? Стоимость картриджа с заменой — около 15 000 – 20 000 рублей.

Отремонтировать картридж. Такая работа под силу исключительно мастерам специализированных автосервисов. Турбину разбирают полностью, моют ультразвуком, выявляют изношенные элементы и меняют их. Корпус картриджа растачивают на токарном станке, а затем всю конструкцию балансируют в два этапа, чтобы на скорости до 150 – 200 тысяч оборотов в минуту не было вибрации. Затем еще в картридж закачивают под давлением масло, чтобы проверить на герметичность.

Почем? Цена ремонта турбины зависит от массы факторов и колеблется от 7 000 до 25 000 рублей. Важно понимать, что если мастера называют серьезную сумму, то зачастую проще купить новую турбину.

Расценки на новые и восстановленные турбины разных производителей

Обратите внимание: автомобильные концерны практически никогда не разрабатывают турбины самостоятельно и чаще всего прибегают к помощи компаний, которые на этом специализируются (например, KKK, Borg Warner или Garrett). При этом та же турбина Garrett 760774-5003S под брендом Ford будет стоить в полтора-два раза дороже, чем под собственным именем. Мораль такова: прежде чем платить огромные деньги за «оригинальные» запчасти, узнайте, кто их поставляет производителю и заказывайте у них.

Как нужно ездить, чтобы продлить жизнь турбине?

Понятное дело, что чем активнее ездить, тем быстрее турбина придет в негодность. Но, помимо этой очевидной зависимости, есть еще несколько полезных советов.

  • Нужно охлаждать турбину. Чем активнее вы топтали педаль газа и «отжигали», тем дольше ее нужно охлаждать. Открывать капот и обмахивать «улитку» газеткой не нужно. Просто постойте пару минут на холостом ходу — масло будет циркулировать в моторе и турбине и заберет избыточное тепло. Вообще возьмите за правило перед парковкой ехать поспокойнее.
  • После долгого стояния в пробке не ускоряйтесь резко. Понятное дело, что вам хочется на свободу после заточения в заторе, но помните: пока вы стояли без движения, двигатель, турбина и интеркулер нагрелись, и если их сильно раскрутить, то нагрев будет чрезмерным или даже критическим.
  • Следите за температурой масла и антифриза и почаще их меняйте. Грязное масло и антифриз, который плохо отводит тепло, ускорят износ турбины.
  • Своевременно обслуживать двигатель. Здесь для каждой модели рекомендации будут индивидуальными. На современных фольксвагеновских моторах 1.4 TSI нужно следить за чистотой интеркулера, который быстро загрязняется, так как находится прямо во впускном коллекторе. На старых продольно расположенных 1.8 TSI требует регулярной очистки трубка подачи масла…

У каждого мотора есть свои нюансы. Если хотите максимально обезопасить себя от преждевременной смерти турбины, узнайте эти тонкости у специалистов. При покупке новой машины помогут мастера дилерского центра, а если берете подержанную, то обратитесь на специализированную СТО, которая занимается конкретно этой маркой. Также весьма полезным будет поговорить с мастерами автосервиса, ремонтирующими турбины.

Как работает турбина? Устройство и конструкция турбины

Турбокомпрессор – это механизм, который используют в автомобилях. С его помощью удается улучшить работу двигателя, повысить его мощность и при этом сохранить габаритные размеры агрегата, расход топлива.

Конструкция

Устройство компрессора имеет довольно сложную, но в то же время весьма понятную конструкцию. В нее входят такие элементы, как:

  1. Корпус. Его выполняют преимущественно из материалов, способных пережить высокие температуры. Обычно в качестве такого материала выступает сталь. Выполняется корпус в форме улитки, у которой есть два разнонаправленных патрубка.
  2. Турбинное колесо. Способствует переводу энергии выхлопных газов в энергию вращения вала. Крепится непосредственно на вал. Для изготовления колеса используют железно-никелевый сплав.
  3. Компрессорное колесо. Способствует нагнетанию воздуха в цилиндры, полученного из прокрученных через турбинное колесо выхлопных газов. Материал для изготовления этой детали – алюминий. Плюсом выбора алюминия является снижение потерь энергии.
  4. Вал турбины. Элемент предназначен для соединения турбинного и компрессорного колес.
  5. Подшипники. Также их иногда называют шарикоподшипниками ввиду того, что они обеспечивают шарнирное крепление вала в корпусе. Конструкция может содержать от одного до двух подшипников.
  6. Перепускной клапан. Отвечает за количество поступающего газа, перенаправляя его и воздействуя таким образом на турбинное колесо. Клапан дополнительно оснащен пневматическим приводом.

Одновременная работа всех элементов делает двигатель эффективным.

Принцип работы

Действие компрессора основано на выполнении элементами следующих этапов:

  1. Лопатки турбинного колеса принимают выхлопные газы.
  2. Колесо начинает вращаться, постепенно увеличивая скорость оборотов. При необходимости колесо может разогнаться до 250 000 оборотов в минуту.
  3. Через турбинное колесо разогнавшиеся газы переходят в пусковой клапан.
  4. Сжатый воздух попадает на компрессионное колесо, которое равномерным движением перенаправляет его во впускное отверстие внутрь цилиндра двигателя.

С помощью перечисленных выше действий двигатель начинает активно работать, заставляя автомобиль трогаться с места.

Особенности эксплуатации турбин

Если сравнивать действие турбокомпрессора со стандартным нагнетателем воздуха, который работает исключительно от привода коленчатого вала, главными достоинствами первого будут:

  • повторное использование энергии выхлопных газов;
  • небольшая цена;
  • экономия энергии.

Устройство турбины компрессора практически одинаковое как в случае использования на дизельных, так и на бензиновых моторах. Однако предпочтение все же отдают компрессорам для дизельных агрегатов.

Особенность турбокомпрессора заключается в режиме действия. Для бензиновых двигателей устройства выполняют из жаропрочных материалов из-за высокой температуры отработавших газов, которая способна достичь 1000°. У дизеля температура газов меньше, поэтому и материалы в турбокомпрессоре используют менее жаропрочные.

Дополнительные элементы системы

Стоит отдельно рассмотреть несколько дополнительных элементов. Они тоже входят в конструкцию компрессоров и регулируют определенные процессы.

Клапан Blow-off

Блоу-офф клапан по-другому еще называют перепускным. Установка этого клапана осуществляется в воздушной системе, обычно между дизельной заслонкой и выходным отверстием компрессора. Цель клапана — устранение аварийных ситуаций при работе агрегата. Например, в процессе эксплуатации агрегат может перейти в нежелательный режим surge, если вовремя это не остановить.

Данный режим возникает из-за высокой скорости воздушного потока. В этом случае компрессор старается перекрыть дроссель и хочет сделать это как можно резче. Объясняется возникновение режима тем, что скорость воздушного потока вследствие выхода газов и сам расход воздуха начинают резко снижаться. Турбина же, ввиду силы инерции продолжает быстрое вращение.

Если не уменьшить вращения, последствия могут быть печальными. Один из признаков подобного скачка воздуха – неприятный звук, который прорывается через компрессор. Дальнейшее игнорирование проблемы приведет к поломке подшипников турбины, которые вынуждены принимать большие нагрузки из-за возникших скачков.

Блоу-офф клапан следит за величиной давления внутри коллектора и включается в работу, если оно начинает сильно скакать. Обеспечивает работоспособность клапана установленная внутри пружина, с помощью которой удается предотвратить изменение положения дросселя и наладить работу компрессора.

Если же клапан не успел, и дроссель закрылся, то блоу-офф начинает стравливание в атмосферу избытка давления. Благодаря подобной работе удается снизить риск аварии и уберечь турбокомпрессор от больших нагрузок, способных вызвать его поломку.

Клапан Wastegate

Механический клапан Wastegate устанавливают на турбине или на конструкции выпускного коллетора. Основная задача этой детали заключается в регулировании уровня давления, которое постепенно нарастает внутри компрессора.

Конструкции некоторых дизельных двигателей не содержат вейстгейт, а вот в случае бензиновых агрегатов наличие подобного клапана – обязательное требование для его надежной эксплуатации.

Благодаря работе вейстгейта удается обеспечить беспроблемный и беспрепятственный выход для выхлопных газов из системы. При этом отработавшие газы обходят работающую турбину. С помощью подобного распределения газов осуществляется контроль за нужны количеством энергии.

Подобная предусмотрительность позволяет организовать эффективное управление давлением наддува внутри компрессора. Осуществление контроля обеспечивается за счет встроенной пружины, которая создает противодавление. Именно эта конструкция контролирует обходной поток отработавших газов.

Клапан по виду может быть:

  1. Встроенным. Конструкция подразумевает наличие заслонки, которая встраивается в хаузинг. Хаузинг также называют «улиткой» основной турбины агрегата. Также этот элемент содержит пневматический актуатор.
  2. Внешний. Гейт такого типа представляет стандартный клапан, устанавливаемый на выпускной коллектор. У этого клапана есть преимущество, которое делает его более востребованным нежели встроенный. При необходимости клапан позволяет вернуть сброшенных обходной поток. В случае спортивных автомобилей сброс клапан сбрасывает газы прямо в атмосферу, предотвращая их попадание внутрь турбины.

Оба дополнительных элемента способствуют равномерной работе автомобильного турбокомпрессора и предотвращают возникновение неприятных ситуаций, способных повлечь за собой различные аварии.

Плюсы и минусы

У турбокомпрессора, как и у любого устройства, имеются свои плюсы и минусы в работе. Для начала стоит озвучить достоинства агрегата, и среди них внимание можно уделить следующи:

  1. Турбокомпрессор считается востребованным агрегатом ввиду возможности увеличения мощности двигателя на 35-40%.
  2. Агрегат не способен навредить двигателю и его работе. Любые поломки мотора, а также выход его из строя никак не связан с воздействием на него агрегата, который отвечает за мощность.
  3. Двигатель, оборудованный компрессором, выбрасывают в атмосферу меньшее количество выхлопов. Объясняется это тем, что турбокомпрессор использует энергию отработавших газов повторно, в связи с чем уменьшается их количество на окончательном выходе из двигателя.
  4. Позволяет уменьшить расход топлива на 5-20%. Подобная характеристика также позволяет увеличить КПД и сделать работу мотора эффективнее.
Читайте также  Как перевозить негабаритный груз на легковом автомобиле?

Также к плюсам можно отнести то, что двигатели, оборудованные турбокомпрессором, лучше работают на высокогорных дорогах, практически не теряя мощность. Наконец, устройство заглушает шум от работы системы выпуска.

Минусы конструкции в:

  • увеличении стоимости обслуживания автомобиля;
  • необходимость в использовании специального моторного масла;
  • постоянной проверке качества топлива и его замене.

Еще один минус в необходимости проработки двигателя на холостых оборотах перед поездкой.

Несмотря на недостатки, турбокомпрессор все же стоит использоваться в автомобилях ввиду перечисленных выше достоинств. Данный агрегат способен заметно улучшить работу двигателя и сделать поездку на автомобиле более комфортной.

Принцип работы турбины на дизельном двигателе

Турбонаддув обязан свои появлением пресловутой немецкой рачительности и практичности во всём. Ещё Рудольфу Дизелю и Готлибу Даймлеру, в конце XIX века, не давал покоя такой вопрос. Как же так: выхлопные газы просто так выбрасываются в трубу, а энергия, которой они обладают, не приносит никакой пользы? Непорядок… В веке двадцать первом, двигатели, оснащённые турбиной, давно перестали быть экзотикой и используются повсеместно, на самой разной технике. Почему турбины получили распространение прежде всего на дизельных двигателях и каков принцип работы этих полезных агрегатов, разберём далее – в строго научно-популярной, но наглядной и понятной каждому форме.

Об истории изобретения и внедрения турбонаддува

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Устройство системы турбонаддува

Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.

Составные части устройства турбонаддува:

  • корпус компрессора;
  • компрессорное колесо;
  • вал ротора, или ось;
  • корпус турбины;
  • турбинное колесо;
  • корпус подшипников.

Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.

Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.

Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…

Как работает турбина дизельного двигателя

Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.

То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).

В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.

Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.

Дизельная турбина в разрезе

Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.

Необходимые дополнения в состав системы турбонаддува: клапаны, интеркулер

Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.

Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.

Дизельный турбокомпрессор «Бош»

Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).

Кроме того, современная система турбонаддува двигателя не обходится без:

  • регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса , при необходимости, в приёмную трубу;
  • перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
  • и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
  • выпускного коллектора, совместимого с турбокомпрессором;
  • герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.

Применение турбонаддува в мировом машиностроении

На дворе двадцать первый век, и никто уже не гонится за тем, чтобы название его легкового автомобиля было с модной в веке ХХ-м приставкой «турбо». Никто и не верит более в «магическую силу турбины» для резкого ускорения автомобиля. Смысл применения и эффективность работы системы турбонаддува всё-таки не в этом.

Разумеется, наиболее эффективен турбонаддув при его использовании на двигателях тракторов и тяжёлых грузовиков. Он позволяет добавить мощности и крутящего момента без возникновения перерасхода топлива, что очень важно для экономических показателей эксплуатации техники. Там он и используется. Нашли своё широкое применение турбосистемы также на тепловозных и судовых дизелях. И это наиболее мощные из созданных человеком турбин для дизельного двигателя.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: