Сколько вольт в аккумуляторе телефона?

Литиевые аккумуляторы: немного теории и пара практических советов

Современный мобильный телефон – устройство многофункциональное. С его помощью можно звонить, писать SMS-сообщения, путешествовать по интернету, работать с электронной почтой, слушать музыку, играть и делать многое другое. Но, весь этот океан возможностей доступен до тех пор, пока в телефоне не разрядится аккумулятор. А можно ли увеличить время автономной работы от одной зарядки и срок жизни аккумулятора?

Однако перед тем как переходить к рассмотрению основного вопроса, предлагаю вам небольшой исторический экскурс и краткий теоретический минимум. Основной принцип, лежащий в основе функционирования аккумуляторов, был открыт Луиджи Гальвани в 17 веке. Это открытие было совершено случайно, ведь целью экспериментов Гальвани было исследование реакций подопытных животных на различные внешние воздействия. Однако, именно результаты, полученные Гальвани, стали основой исследований другого крупного ученого – Алессандро Вольта, который дал этому явлению правильное теоретическое объяснение и создал первый в мире гальванический элемент, представлявший собой емкость с соляной кислотой, в которую были погружены цинковая и медная пластины.

Все гальванические элементы можно разделить на две группы – первичные и вторичные. Их принципиальным отличием является то, что вторичные элементы при определенном внешнем воздействии могут восстанавливать свои свойства. Как вы, наверняка, уже догадались, первичные гальванические элементы – это не что иное как батарейки, а вторичные – аккумуляторы. Процесс восстановления свойств вторичного гальванического элемента мы привычно называем «зарядкой». Существует несколько типов аккумуляторов, отличающихся используемыми сочетаниями материалов, при этом для современных портативных устройств чаще всего используются аккумуляторы на основе лития — литий-ионные и литий-полимерные. По своим потребительским свойствам литий-ионные и литий-полимерные очень похожи между собой, за исключением того, что в литий-полимерных аккумуляторах используется твердый или гелеобразный полимерный электролит, что позволяет придавать им различную форму и малую толщину.

Обязательный элемент аккумуляторов на основе лития – электронная схема, служащая для контроля заряда и защиты «банки» аккумулятора. Она выполняет две функции – защищает аккумулятор от перезаряда и переразряда. Рабочее напряжение для литиевого аккумулятора – 3,6…4,2 В. Переразрядом считается снижение напряжения аккумулятора ниже 2,9 В, а перезарядом – превышение им значения 4,3 В. При этом, в обоих случаях, электроника аккумулятора разорвет электрическую цепь между входным контактом аккумулятора и «банкой» (с точки зрения пользователя аккумулятор «умирает»). Кстати, именно это и происходит когда телефон долго лежит с разряженным аккумулятором, так как даже в выключенном состоянии телефон потребляет немного энергии, поэтому неиспользуемый телефон следует хранить либо с полностью заряженным аккумулятором, либо вообще вытащить из него батарею.

В каждом аккумуляторе на основе лития должна быть такая «электронная пластинка

Для восстановления работоспособности при перезаряде (в исправных телефонах это явление практически не встречается) – понадобится подождать пока напряжение на «банке» аккумулятора снизится до допустимых значений, а при переразряде – «толкнуть» батарею при помощи универсального зарядного устройства («лягушки»). Причем «лягушки» бывают двух видов – полуавтоматические и полностью автоматические, отличающиеся тем, что в устройствах первого типа понадобится вручную (нажав/отжав кнопку) задать правильную полярность выходного напряжения. Кстати, на практике именно полуавтоматические «лягушки» удобнее – полный автомат далеко не всегда способен «толкнуть» сильно разряженный аккумулятор. В то же время пытаться заряжать аккумулятор в обход схемы заряда не следует – он может выйти из строя и даже взорваться.

Полуавтоматическое зарядное устройство

Автоматическое зарядное устройство. Главное отличие – количество светодиодов (обычно на «автомате» их три, на полуавтомате – четыре) и отсутствие кнопок

Вообще – увлекаться универсальными зарядными устройствами не следует, а лучше заряжать аккумулятор, используя штатное зарядное устройство телефона. Схематически цикл зарядки литиевого аккумулятора приведен на схеме.

Основных этапов три. На первом из них идет заряд батареи максимальным током, до достижения на ней напряжения 4,1…4,2 В, при этом на дисплее телефона отображается значок зарядки аккумулятора. И именно длительность этого этапа указана в руководстве пользователя как время зарядки телефона.

На втором этапе идет «доводка» батареи, причем, несмотря на то, что на дисплее телефона уже светится сообщение «аккумулятор заряжен», этап доводки очень важен. На практике аккумулятор после «доводки» способен накопить до 30% больше энергии. Полной зарядкой аккумулятора считается момент, когда величина зарядного тока составит 0,03 (3%) от своего начального значения. В зависимости от емкости аккумулятора и параметров зарядного устройства длительность «доводки» может составлять от 45 минут до 3-6 часов. Кстати, при использовании универсальных зарядных устройств обычно выполняется лишь первый этап, а «доводка» не производится, поэтому аккумулятор, заряженный от «лягушки» проработает меньше, чем тот же аккумулятор, заряженный штатным зарядным устройством.

Третий этап – это компенсационный заряд, т.е. после завершения зарядки, оставаясь подключенным к зарядному устройству, аккумулятор восполняет энергию, потраченную на работу телефона. Этот этап необязателен, более того – он даже в определенной мере вреден для батареи, так как при подобной подзарядке могут накапливаться ошибочные данные в электронике управляющей зарядом.

Как правильно эксплуатировать аккумуляторы на основе лития? Ответ можно выразить в короткой фразе – «Используйте аккумулятор. Не слишком много. В основном для небольших приложений». Звучит довольно загадочно, поэтому рассмотрим смысл этого выражения более подробно.

Первое, о чем следует помнить – аккумуляторы на основе лития не любят сильного разряда. Более того, регулярный полный разряд аккумулятора – отнюдь не способствует его долгой и счастливой жизни. Гораздо более правильным является разряд батереи до уровня примерно в 20%. На индикаторе мобильного телефона обычно такому уровню заряда соответствует 1 деление. В тоже время не стоит пытаться все время держать аккумулятор заряженным. Если провести аналогию с занятиями спортом, то для аккумулятора хорошей тренировкой является регулярные пробежки на несколько километров, но марафон – его сильно выматывает, отсутствие нагрузки – способствует к образованию «жирка». Применительно к аккумуляторам «жирок» выражается в сокращении времени автономной работы.

В тоже время, периодически, с интервалом примерно раз в месяц, стоит доводить телефон до автоматического отключения с сообщением «Аккумулятор разряжен». Главное – сразу же поставить его на полный цикл зарядки (т.е. 6-8 часов, независимо от надписей на дисплее). Причем, необходимость подобных тренировок вовсе не физические свойства аккумулятора – для литиевых аккумуляторных батарей эффект памяти не характерен. Тренировки нужны для устранения «цифрового эффекта памяти», возникающего при регулярных подзарядках – во время цикла полного разряда-заряда в схеме управления электропитанием будут очищены ошибочные данные, накопившиеся при подзарядках. Кстати, по этой же причине сразу после покупки новый телефон следует подвергать 3-5 полным циклам перезаряда.

Особенно актуальна подобная тренировка для смартфонов, любящих подзаряжаться при синхронизации с компьютером. Однако еще раз подчеркну – тренировками тоже увлекаться не стоит – 1-2 тренировки в месяц более чем достаточны. Также не следует забывать тренировать аккумуляторы и других портативных устройств, особенно ноутбуков или нетбуков, которые постоянно подключены к блоку питания. Кстати, есть рекомендация, что при использовании ноутбука с постоянным подключением к сети следует вообще снимать с него аккумулятор, предварительно запитав его сетевой адаптер через источник бесперебойного питания.

Существует и одно устойчивое заблуждение связано с количеством циклов аккумулятора. Считается, что аккумулятор способен проработать определенное количество циклов перезарядки, независимо от глубины разряда. Для литиевых аккумуляторов этот тезис неверен. Во-первых, потому что два цикла, в которых батарея будет разряжена на 50%, для аккумулятора будут считаться как один, а во-вторых, потому что для литиевых батарей более критично не количество циклов, а возраст. Типичный срок службы аккумулятора на основе лития – 2 года, причем, независимо от того используется он или лежит на полке.

Хотя последнее утверждение тоже не стоит принимать как прописную истину – для оригинальных аккумуляторов возраст менее критичен, чем для их китайских аналогов. Возможно, это вызвано каким-то удешевлением технологий производства. Но факт остается фактом – при правильном уходе и через 5 лет использования фирменный аккумулятор может обеспечивать вполне приемлемую автономность, тогда как аккумулятор безымянного китайского производителя может начать «радовать» преждевременным разрядом уже через несколько месяцев.

Очень важным моментом для аккумуляторов на основе лития является соблюдение температурного режима. Идеальной для них является прохлада, тогда как жара и мороз – противопоказаны. Особенно тяжелый температурный режим у аккумуляторов ноутбуков и мощных смартфонов – помимо внешнего нагрева от элементов устройства, в них присутствует еще и внутренний нагрев, обусловленный большой потребляемой мощностью. Например, посчитайте, сколько потребляет двухядерный смартфон при просмотре HD-видео c фоновой загрузкой данных из интернет и работающим модулем GPS. Аккумуляторам в подобных устройствах приходится очень несладко. Но такова их судьба – иначе, зачем вообще нужны столь мощные девайсы?

Еще одна рекомендация касается запасных аккумуляторов – если аккумулятор не используется, то его следует зарядить примерно до половины (40…50%) и поместить в прохладное место, например, холодильник (но не в морозильное отделение).

К сожалению, ничего вечного не бывает – у каждой вещи есть свой срок службы, поэтому не следует думать, что соблюдение всех рекомендаций позволит аккумулятору оставаться как новому в течение многих лет. Для аккумуляторов производитель обычно указывает такой параметр как емкость через определенное время использования, например, «до 80% от начальной емкости через 1000 циклов». Конечно, эти данные во многом идеализированы, но соблюдая рекомендации по уходу за аккумулятором, есть шанс приблизиться к заявленным параметрам, что само по себе неплохо. В любом случае, рекомендации, приведенные в этой статье, не претендуют на роль истины в последней инстанции, поэтому если вам есть что дополнить или возразить – милости прошу в комментарии.

Какое напряжение Li-ion-аккумулятора лучше: 3,6В, 3,7В, 3,75В, 3,8В или 3,85В?

Какое значение лучше выбирать по напряжению Li-ion-аккумулятора в смартфоне? Ведь вариантов немало: 3,6В, 3,7В, 3,75В, 3,8В или 3,85В.

Напряжение на аккумуляторе указывается двух типов:

  • номинальное (то есть основное рабочее, указывается всегда);
  • максимальное (снижается ток, работает защита от перезаряда, иногда не указано — ниже объясним, почему).

Цифра в значении напряжения зависит от конструкции и типа электрохимической системы литиевого элемента. Узнайте, есть ли разница, и какие элементы лучше для надёжности, срока службы, быстрой зарядки и так далее.

Читайте также  Мойка высокого давления на аккумуляторе

Что означает напряжение Li-ion-аккумулятора смартфона «3,7В / 4,2В»?

Типовой вариант литий-ионных (и литий-полимерных) аккумуляторов с кобальтовым катодом (LCO) имеет напряжение на элемент:

  • 3,6В номинальное;
  • 4,2В максимальное.

Вот, как это напряжение влияет на работу литий-ионного аккумулятора:

  • • Аккумулятор заряжается до 4,2В (индикация 100%);
  • • Постепенно разряжаясь, он удерживает номинальное напряжение на уровне 3,6В (+/- 0,1В при токе разряда 0,2C-0,5C);
  • • При остатке около 20% заряда от ёмкости напряжение падает до 3,0В;
  • • Срабатывают алгоритмы контроля аккумулятора (например, управляющая плата BMS и аппаратно-программные средства смартфона — он выключается).
  • • Срабатывает защита, когда напряжение падает до критического у Li-ion значения 3,0-2,75В (точная цифра зависит от материалов, задумки инженеров и сборки).

Сильно разряженный Li-ion-аккумулятор выключается после срабатывания защиты по нижнему порогу напряжения — размыкается цепь. Восстановить можно. Правда, понадобится специальное оборудование. И результат получится со значительной потерей ёмкости (глубокий разряд).

Исконно-номинальное значение напряжения Li-ion-аккумулятора 3,6В — до 3,7В его увеличили в маркетинговых целях за счёт понижения внутреннего сопротивления.

Диапазон напряжений 3,7-4,2В (рабочий ещё шире: 2,75В-4,2В) используется в литий-ионной технологии повсеместно (в элементах 18650, аккумуляторы в смартфонах, смарт-часах, планшетах, ноутбуках, электроинструменте, электротранспорте). Но встречаются и другие варианты.

Какое напряжение литий-ионного аккумулятора лучше?

Увеличение напряжения от штатных 3,6В добавляет мощности аккумулятору и увеличивает максимальную ёмкость при заряде выше 4,2В.

Однако перезаряд плохо сказывается на сроке службы и безопасности ячейки. Требуются другие материалы, более дорогое производство, чтобы снизить негативный эффект. Новые модели смартфонов могут предложить такие технологии, но стоят ли они усилий и переплаты?

Отличия, которые скрывают цифры по напряжению Li-ion-аккумулятора

Первое значение соответствует номинальному и указывается обязательно на всех ячейках. Второе значение указывается либо рядом, либо где-нибудь в описании характеристик на стикере с информацией. Притом найти его удаётся не всегда на корпусе ячейки (в таком случае считается, что оно штатное для технологии — 4,2В).

3,6В / 4,2В

Традиционные аккумуляторы (обычно с кобальтовым катодом). Исконные значения технологии Li-ion и Li-ion Polymer.

3,7В / 4,2В

Современный и наиболее распространённый вариант достигнут в маркетинговых целях («3,7В больше 3,6В») с небольшой доработкой материалов катода и анода (снижено внутреннее сопротивление).

3,75В / 4,2 или 4,25В

Компромисс между долговечностью, ёмкостью и мощностью, которым пользуются производители во флагманских и популярных моделях. Чтобы достичь большего максимального напряжения при заряде 4,25В поверхность катода покрывается специальными материалами (от грубого нанесения до структурного перекрытия оболочкой), разрабатываются добавки к электролиту.

3,8-3,85В / 4,35-4,4В

Новейшие разработки материалов (тонкоплёночные покрытия катода и добавки в электролит) позволяют заряжать аккумуляторы до 4,35 (+/-0,05В). Это увеличивает мощность (например, полезно для электромотора) и ёмкость (время автономной работы).

Они называются высоковольтовые элементы (LiHV или High Voltage Li-ion, например, HV-LIPO). Из особых требований — поддержка 4,4В со стороны зарядного устройства (должно быть правильно настроено по напряжению полной зарядки для дополнительной ёмкости).

Заряд до такого высокого напряжения, как 4,4В плохо влияет на долговечность. Даже с использованием новейших технологий защиты электродов от чрезмерного износа производитель получает ячейки, в которых уменьшается максимальное число циклов заряд-разряд. Для их работы требуются более ответственные меры, чтобы изделие соответствовало стандартам безопасности.

Интересно, что в Datasheet литий-ионных аккумуляторов 3,85В / 4,4В тестирование демонстрирует более экстремальный заряд до 4,6В. Это ещё сильнее увеличивает ёмкость и мощность.

Однако инженеры отмечают, что для безопасности заряда до такого высокого напряжения следует строго следить за повреждениями и вздутием. Если они есть, то так сильно заряжать нельзя, опасно.

Ответы на частые вопросы по напряжению Li-ion-аккумулятора

Срок службы батареи Li-ion согласован с моральным устареванием модели смартфона. В связи с этим фактом, короткий цикл жизни элемента питания с точки зрения производителей вполне приемлем. Почему бы и не увеличить циферку в ёмкости пусть и немного за счёт срока службы?

На практике мы сталкиваемся с определёнными эффектами при использовании разных напряжений аккумуляторов в одном и том же смартфоне. Возникают популярные вопросы, на которых хотелось бы дать краткие ответы.

Вопрос 1: Напряжение 4,35В или 4,4В действительно лучше, чем 4,2В?

Ответ: Да, это даст больше ёмкости на первые 50-100 полных циклов заряд-разряд (и мощности, например, для мотора в электроинструменте). Далее у двух аккумуляторов 4,35В и 4,2В ёмкость фактически сравняется — «карета превратится в тыкву». В теории срок службы аккумулятора, который продолжают перезаряжать выше 4,2В, будет меньше. Но если не заряжать его выше 80%, то, вероятно, он прослужит даже больше [тезис аргументирован, но требует практических испытаний].

Вопрос 2: Стоит ли искать только аккумуляторы с напряжением 4,2В?

Ответ: Нет, основывать свой выбор только на этой характеристике не стоит. Вы получите аккумулятор со сроком службы 500 полных циклов (на 100-150 циклов больше в сравнении с 4,4В), но с учётом быстрого морального устаревания смартфонов это преимущество может быть совершенно неважно (составит всего несколько месяцев от двух-трёх лет).

Вопрос 3: Есть ли разница между аккумуляторами 3,6В и 3,7В?

Ответ: Есть, но она фактически незаметна. Отличается внутреннее сопротивление, которое критично при определённых экстремальных обстоятельствах.

Вопрос 4: Есть ли разница между аккумуляторами 3,85В и 3,75В?

Ответ: Есть, и довольно большая. Отличаются технологии производства и применения материалов для катода, анода и электролита. Они влияют на максимальный заряд, в том числе дают возможность безопасно заряжать до 4,4В (требуется соответствующая поддержка на заряднике). Это в свою очередь увеличивает максимальную ёмкость (Wh = Ah * V или Вт·ч = А·ч * В).

Вопрос 5: Есть ли разница между аккумуляторами 3,7В и 3,75В?

Ответ: Есть, и она практически незаметна, если производитель не указал максимальное напряжение 4,35В (тогда отличия будут, как в вопросе 4). Обычно на аккумуляторе 3,75В это значение не указывают (тогда считается 4,2В), реже вписывают «измеренное» максимальное напряжение 4,25В — является по сути маркетинговым ходом.

Вопрос 6: Есть ли ещё информация? Я не нашёл напряжение, которое указано на моём аккумуляторе.

Ответ: Могут встречаться промежуточные значения, вроде «3,82В». Это некие «измеренные» («rated voltage») цифры по номинальному напряжению после увеличения максимального напряжения заряда до 4,4В. Достаточно придерживаться указанной выше вилки, чтобы понимать разницу. Кратные напряжения, например, 11,1В говорят о составе батарейного блока из трёх подключённых между собой аккумуляторов 3,7В (3шт x 3,7В = 11,1В).

Напряжение Li-ion аккумулятора — это важная для инженеров характеристика, которую учитывают при концептуальное разработке коммерческого продукта (например, смартфона, планшета, электродрели). Параметры применения литий-ионной ячейки зависят от её максимального напряжения при зарядке, что достигается разными технологическими решениями.

Сейчас актуальны две разновидности максимального напряжения Li-ion:

  • 4,2В (исконное, штатное значение, иногда даже не указывается — и так понятно, аккумуляторы с отсечкой на 4,2В «живут» немного дольше);
  • 4,35В или 4,4В (элементы высокого напряжения или High Voltage Li-ion/LiPo, их срок службы уменьшен взамен на указанные выше преимущества).

Номинальное напряжение 3,6В, 3,7В, 3,75В, 3,8В или 3,85В, указанное на корпусе аккумулятора по сути не влияет на срок службы, если максимальное напряжение одинаковое (4,2В). Но может говорить о разных материалах, применяющихся для катода, анода и электролита.

Все утверждения, которые мы привели в этой статье, основаны на расчётах, исследованиях и тезисах Battery University. В ходе своей работы мы опирались на собственный опыт производства аккумуляторов литий-ионного типа в компании Neovolt.

Для дальнейшего самостоятельного изучения рекомендуем обратиться к научному исследованию: «Практическая оценка литий-ионных аккумуляторов» [опубликовано в ScienceDirect] — эта работа входит в национальную программу ключевых исследований и разработок Китая (грант №2016YFB0100100 )

Пишите вопросы в комментарии. Мы ждём ваши сообщения и ВКонтакте @NeovoltRu.

Подпишитесь на нашу группу, чтобы узнавать новости из мира автономности гаджетов, об их улучшении и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в   и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.

Правила эксплуатации литиевых аккумуляторов

Владельцы различных устройств иногда испытывают определённые трудности при поиске информации о правильной эксплуатации аккумуляторов. Этому вопросу и посвящена данная статья.

Все современные телефоны, смартфоны и КПК снабжены аккумуляторами на литиевой основе: литий-ионными или литий-полимерными, поэтому в дальнейшем речь будет идти именно о них. Такие аккумуляторы имеют замечательную ёмкость и сроки службы, но требуют очень жёсткого следования определённым правилам эксплуатации. Эти правила можно разделить на две группы:

Не зависящие от пользователя

Зависящие от пользователя.

В первую группу входят основополагающие правила заряда и разряда аккумуляторов, которые контролируются встроенным в аккумулятор устройством (контроллером), а также иногда дополнительным контроллером, располагающимся в самом устройстве. Эти правила просты:

Аккумулятор всю свою жизнь должен находиться в состоянии, при котором его напряжение не превышает 4.2 вольта и не опускается ниже 2.7 вольта. Эти напряжения являются показателями соответственно максимального (100%) и минимального (0%) заряда. Минимальное напряжение, указанное выше, применимо к аккумуляторам с электродами, выполненными из кокса, однако большинство современных аккумуляторов имеет электроды из графита. Для них минимальное напряжение равно 3 вольта.

Количество энергии, отдаваемой аккумулятором при изменении его заряда от 100% до 0%, — это его ёмкость. Некоторые производители ограничивают максимальное напряжение 4.1 вольтами, при этом аккумулятор живёт подольше, но его ёмкость снижается примерно на 10%. Также иногда нижний порог повышается до 3.0-3.3 вольт, в зависимости от материала электродов, с такими же последствиями.

Наибольшая долговечность аккумулятора достигается при примерно 45-процентном заряде, а при увеличении или уменьшении степени заряда срок жизни аккумулятора уменьшается. Если заряд находится в пределах, которые обеспечивает контроллер аккумулятора (см. выше), изменение долговечности не значительно.

Если в силу обстоятельств напряжение на аккумуляторе выходит за пределы, указанные выше, даже на непродолжительное время, срок его жизни драматически уменьшается. Такие состояния называются заряд и переразряд и являются очень опасными для аккумулятора.

Читайте также  Сухие банки в аккумуляторе что делать?

Контроллеры аккумуляторов, предназначенные для разных устройств, если они (контроллеры) изготовлены с надлежащим качеством, никогда не позволяют напряжению на аккумуляторе во время заряда стать больше 4.2 вольта, но, в зависимости от предназначения батареи, могут по-разному ограничивать минимальное напряжение при разряде. Так, в аккумуляторе, предназначенном для, скажем, шуруповёрта или моторчика модели автомобиля, минимальное напряжение, скорее всего, будет действительно минимально допустимым, а для КПК или смартфона — повыше, ибо минимального напряжения в 2.7-3.0 вольт может просто не хватить для работы электроники девайса. Поэтому в сложных устройствах типа телефонов, КПК и т.п. работу контроллера, встроенного в сам аккумулятор, дополняет контроллер в самом устройстве.

Поговорим о процессе заряда литиевых аккумуляторов. Зарядное устройство любого литиевого аккумулятора представляет собой источник постоянного напряжения в 5 вольт, способный отдавать для заряда ток, равный примерно 0.5-1.0 емкости аккумулятора. Так, если емкость аккумулятора равна 1000 mA•h, зарядное устройство должно обеспечить ток заряда не менее 500 mA, а номинально — 1 ампер.
Существует несколько режимов заряда литиевых аккумуляторов.
Начнём с режима, являющегося стандартным в компании Sony. Этот режим требует длительного времени заряда, сложного контроллера, но обеспечивает наиболее полный заряд аккумулятора. На представленном графике синим цветом обозначен ток заряда, красным — напряжение на аккумуляторе, розовым — степень заряженности аккумулятора в процентах.

На первом этапе зарядки, длящемся приблизительно 1 час, аккумулятор заряжается током постоянной величины до достижения напряжения в 4.2 вольта на аккумуляторе. После этого начинается второй этап, длящийся также около часа, во время которого контроллер, поддерживая напряжение на аккумуляторе ровно в 4.2 вольта, постепенно уменьшает зарядный ток. При уменьшении зарядного тока до определённой величины (порядка 0.2 от ёмкости аккумулятора) начинается третий этап зарядки, в течение которого зарядный ток продолжает уменьшаться, а напряжение на клеммах аккумулятора сохраняется на прежнем уровне — 4.2 вольта. Третий этап, в отличие от первых двух, имеет строго определенную длительность, определяемую встроенным в контроллер таймером, — 1 час. По истечении третьего этапа контроллер полностью отключает аккумулятор от зарядного устройства.
Степень заряженности аккумулятора в конце первого этапа равна 70%, в конце второго — 90%, а в конце третьего — 100%.
Многие компании, стремясь к удешевлению своих устройств, используют упрощенные режимы заряда аккумуляторов, например, прекращая заряд при достижении напряжения на аккумуляторе 4.2 вольта, то есть используя только первый этап зарядки. В этом случае аккумулятор заряжается быстро, но, увы, только до 70% своей реальной емкости. Определить, что в вашем устройстве именно такой, упрощенный контроллер нетрудно, — для полноценной зарядки требуется примерно 3 часа, не меньше.

Во вторую группу входят правила эксплуатации, на которые мы с вами можем влиять, тем самым значительно увеличивая или уменьшая срок жизни аккумулятора. Эти правила следующие:

нужно стараться не доводить аккумулятор до минимального заряда и, тем более, до состояния, когда машинка сама выключается, ну, а если так случилось, то нужно зарядить аккумулятор как можно скорее.

не нужно бояться частых подзарядок, в том числе и частичных, когда полный заряд не достигается — аккумулятору это не вредит.

вопреки сложившемуся у многих пользователей мнению, перезаряд вредит литиевым аккумуляторам не меньше, а даже больше, чем глубокий разряд. Контроллер, конечно, ограничивает максимальный уровень заряда, но есть одна тонкость. Хорошо известно, что ёмкость аккумуляторов зависит от температуры. Так, если, например, мы зарядили аккумулятор при комнатной температуре и получили заряд 100%, то при выходе на мороз и остывании машинки степень заряженности аккумулятора может снизиться до 80% и ниже. Но может быть и обратная ситуация. Аккумулятор, заряженный при комнатной температуре до 100%, будучи немножко нагрет, станет заряженным, скажем, до 105%, а это для него очень и очень неблагоприятно. Такие ситуации встречаются при эксплуатации машинки, длительное время находящейся в кредле. Во время работы температура девайса и вместе с ним аккумулятора повышается, а ведь заряд уже полный…
В связи с этим правило гласит: если Вам необходимо работать в кредле, сначала отсоедините машинку от зарядки, поработайте на ней, а когда она выйдет на “боевой” температурный режим, подключайте зарядку.
Кстати, это правило также касается владельцев ноутбуков и прочих гаджетов.

Идеальные условия для длительного хранения аккумулятора — это нахождение вне девайса с зарядом примерно 50%. Исправный аккумулятор при этом не требует заботы о себе месяцами (порядка полугода).

И напоследок еще немного информации.
— Вопреки сложившемуся мнению, литиевые аккумуляторы, в отличие от никелевых, почти не обладают “эффектом памяти”, поэтому, так называемая, “тренировка” нового литиевого аккумулятора практически не имеет смысла. Для собственного успокоения достаточно один-два раза полностью зарядить-разрядить новый аккумулятор. Это нужно для калибровки дополнительного контроллера.
— Владельцы устройств знают, что можно заряжать батарею как от зарядного устройства, так и от USB. При этом зачастую вызывает недоумение невозможность зарядки от USB. Дело в том, что по “закону” USB-контроллер должен отдавать периферийным устройствам, подключенным к нему, ток около 500 mA. Однако бывают ситуации, когда либо сам контроллер не может обеспечить такой ток, либо устройство подключают к USB контроллеру, на котором уже висит какая-то периферия, потребляющая часть мощности. Вот и не хватает тока для зарядки, особенно если аккумулятор разряжен слишком сильно.
— Литийсодержащие аккумуляторы ОЧЕНЬ НЕ ЛЮБЯТ ЗАМОРАЖИВАНИЕ. Всегда старайтесь избегать пользования машинкой на сильном морозе — увлечетесь, и аккумулятор придётся менять. Конечно, если Вы достали машинку из тёплого внутреннего кармана куртки и сделали пару заметок или звонков, а потом положили зверька обратно, проблем не будет.
— Практика показывает, что литиевые батареи (не только аккумуляторы) снижают свою ёмкость при уменьшении атмосферного давления (в высокогорье, в самолете). Вреда батареям это не приносит, но знать об этом следует.
— Бывает, что после приобретения аккумулятора повышенной ёмкости (скажем, 2200 mA•h вместо штатных 1100 mA•h) машинка через пару дней пользования новым аккумулятором начинает странно себя вести: виснет, отключается, зарядка аккумулятора, вроде, происходит, но как-то странно, и т.п. Не исключено, что ваше зарядное устройство, которое с успехом работает на “родном” аккумуляторе, просто не в состоянии обеспечить достаточный ток зарядки аккумулятора большой ёмкости. Выход — приобретение зарядного устройства с большим отдаваемым током (скажем, 2 ампера вместо прежнего 1 ампера).

Диагностика аккумуляторов сотовых телефонов

При длительном хранении и несоблюдении зарядно-разрядных режимов эксплуатации, аккумуляторы сотовых телефонов приходят в негодность. Попытка восстановить ёмкость аккумуляторов длительным зарядом или специальными режимами зарядки и восстановления ёмкости не всегда приводит к желаемому результату. Никель-кадмиевые и никель — металлогидридные аккумуляторы, используемые в сотовой связи, по сравнению с литий- ионными имеют «эффект памяти», не допускают длительного подключения к зарядному устройству, требуют тренировочные циклы. Литий- полимерные аккумуляторы используют твёрдый сухой электролит из полимера, недостаток -плохая проводимость, преимущество –очень малая толщина, устойчивость к перезаряду.

Аккумулятор после продолжительной эксплуатации не имеет достаточной для работы ёмкости, быстро разряжается и долго заряжается.
Старение аккумуляторов вызвано ростом кристаллизации. Кристаллы имеют высокое сопротивление и снижают зарядно-разрядный ток. Применение импульсных зарядных устройств с системой контроля и струйного подзаряда позволяет продлить эксплуатацию аккумулятора.

Разрядить аккумулятор возможно токами не превышающими токи дежурного режима передачи в 150-200мА, нагружая большими тока — схема защиты отключит аккумулятор от нагрузки через 10-20 мс. после подключения, схема запирается и ток разряда снижается почти до нуля, при повторном замыкании разрядной цепи ток разряда вновь возникает. Это необходимо для предотвращения взрыва литий — ионного аккумулятора после образования металлического лития и опасности разгерметизации.

Ток разряда при диагностики аккумулятора можно получить в импульсном режиме с определённой частотой следования импульсов, так называемый импульсный разряд.
Чтобы определить техническое состояние аккумулятора сотового телефона необходимо его нагружать импульсным разрядным током.

Данное решение применимо и для диагностики щелочных и кислотных аккумуляторов любой ёмкости, всё зависит от мощности аккумуляторов и разрядных цепей.

Внутреннее сопротивление аккумуляторов сотовых телефонов не должно превышать 0.3 Ома, большая величина не позволит нормально работать длительное время, напряжение ускоренно снижается, вскоре экран гаснет с переходом в энергосберегающий режим хранения. Для рекомбинации ионов лития в аккумуляторе после полной зарядки рекомендуется 3- 5 часовой отдых аккумулятора. Форма и время разрядного импульса устройства диагностики аккумуляторов сотовых телефонов должно повторять форму нагрузочного тока аккумулятора в режиме передачи цифрового сигнала в стандарте GSM -импульсный ток передачи 1,5 Ампера, длительность 567 мкс и частота следования 4,61 мс. Ток потребления в паузах составляет 200мА. Узел защиты литиевых аккумуляторов состоит из двух микросхем одна работает в режиме компаратора, вторая содержит два последовательных полевых транзистора со встроенными диодами включенными во встречном положении с функциями : защиты от чрезмерной разрядки (когда напряжение на аккумуляторе во время разрядки ниже установленного уровня, задержка закрывания полевого транзистора VT1 составляет 12мс), защита от замыкания выводов аккумулятора (когда напряжение на полевых транзисторах превысит определённый порог, закрывание транзистора VT1 происходит со скоростью 0,4 мс ), защита от превышения допустимого зарядного тока (чужой ЗУ — закрывается VT2 ), зарядка сильно разряженных аккумуляторов (напряжение элемента более 1,5 Вольта).

Принципиальная схема прибора диагностики аккумуляторов сотовых телефонов (рис.1) состоит: из ждущего мультивибратора импульсов на аналоговом таймере DA1, с ручным внешним пуском и установкой частоты генератора, разрядной схемы на биполярном транзисторе VT1 и аналоговом индикаторе ёмкости исследуемого аккумулятора на микросхеме DA3. Питание принципиальной схемы выполнено от сетевого источника через стабилизатор напряжения DA4.

В исходном состоянии на выходе 3 таймера DA1 уровень напряжения близок к нулю, так как в начальный момент подачи питания на входе нижнего компаратора уровень напряжения выше 1/3 Un.В этом устойчивом состоянии схема может находиться сколько угодно долго.

При нажатии кнопки SB1 — «Пуск» появляется запускающий импульс на входе 2 DA1 в виде низкого уровня напряжения, срабатывает нижний компаратор таймера и внутренний триггер переключится, что приведёт к закрытию транзистора сброса по входу 7DA1, конденсатор C2 начнёт заряжаться через резисторы R3,R4, в это время на выходе 3DA1 поддерживается высокий уровень напряжения. Генерирование прямоугольных импульсов продолжится со временем Т1=1,1 С1 (R1+R2).

Читайте также  Прибор для замера плотности электролита в аккумуляторе

По достижению на конденсаторе С2 напряжения в 2/3 Un верхний компаратор срабатывает и обнуляет триггер, внутренний транзистор сброса разряжает конденсатор С2 через резистор R5.

При достижении напряжения на конденсаторе С1 более 1/3 Un таймер прекратит работу.
Длительность одиночного импульса на выходе 3DA1 Т2 = 1,1С2 (R3+R4) можно плавно изменять переменным резистором R4.

Вывод 5 DA1 позволяет получить прямой доступ к точке делителя с уровнем напряжения 2/3 Un, являющейся опорной для работы верхнего компаратора. Использование данного вывода позволяет менять этот уровень для получения модификаций схемы. В данном устройстве диагностики аккумуляторов сотовых телефонов этот вывод используется для стабилизации режима измерений и коррекции влияния внешней температуры. Модификация напряжения на выводе 5DA1 выполняется с помощью микросхемы DA2 — регулируемого параллельного стабилизатора напряжения и используется в качестве источника образцового напряжения — регулируемого стабилитрона. В микросхеме стабилизатора имеются собственные устройства защиты от перегрузки и повышенного входного напряжения. Терморезистор RK1 позволяет корректировать изменения технического состояния аккумулятора с учётом повышения или понижения внешней температуры.

При повышении напряжения на нагрузке R9 в цепи эмиттера биполярного транзистора VT1 параллельный стабилизатор открывается по входу управления 1DA2, сопротивление катод-анод снижается и падает напряжение на выводе 5 DA1, растёт частота на выходе 3DA1 таймера, что ведёт к снижению напряжения на нагрузке R9. Назначение транзистора VT1 в схеме диагностики -подключение нагрузки, разрядного резистора R9 к аккумулятору GB1. В коллекторную цепь транзистора подключен испытуемый аккумулятор, в эмиттерную подключены, кроме нагрузки, цепи контроля напряжения и температуры цепи отрицательной обратной связи RК1,R11,R10 и цепи контроля уровня емкости аккумулятора R12, R13,R14.

Напряжение аккумуляторов разного исполнения несколько отличаются, корректировку можно выполнить резистором R11. Падение напряжения на нагрузке — резисторе R9 при открытии очередным импульсом генератора транзистора VT1 создаёт падение напряжения, оно тем больше чем больше ёмкость аккумулятора и ниже его внутреннее сопротивление. С переменного резистора R13 через резистор R14 контрольное напряжение поступает на входной усилитель пятиканального таймера DA3. К выводам ключей компараторов К1-К5 подключены светодиоды. Возрастание напряжения на входе 8DA3, после усиления, поступает на внутренний делитель напряжения сигнала, ключи на входах внутренних компаратор будут открываться в момент превышения этого напряжения. Чем больше уровень сигнала, тем больше ключей будет открыто. При напряжении на входе 8DA3 в 0,25 Вольта горят все светодиоды.

Светодиоды по свечению следует распределить в следующем порядке: красный, полный разряд — HL1, оранжевый HL2 –емкость в аккумуляторе минимальная, зелёный HL3,HL4 — заряжен на 50 -75 процентов, синий HL5 -100%. При полной зарядке включится звуковой сигнал сирены ZQ1.

Наладку принципиальной схемы диагностики аккумуляторов сотовых телефонов начинают с проверки работы генератора на таймере DA1, если нет осциллографа импульсы на выходе 3 таймера DA1 можно определить по светодиоду или вольтметром по высокому уровню при нажатии кнопки «Пуск».

Подключив в правильной полярности свежезаряженный аккумулятор сотового телефона, резистором R13 выставить свечение светодиода HL5.

При диагностике аккумуляторов со сроком работы более 6 месяцев, количество включенных светодиодов уменьшится. Снижение напряжения на аккумуляторе при высоком внутренним сопротивлении снизит падение напряжения на разрядном резисторе R9. Подключение проверяемого аккумулятора к устройству диагностики выполняется острыми наконечниками контрольных шнуров используемых от тестеров.

Время измерения устанавливается резистором R1, частота следования импульсов в пределах 400 -1000 Герц устанавливается резистором R4.

Светодиоды крепятся в отверстия передней панели корпуса в приемлемом порядке. Все радиодетали малогабаритные с установкой на печатной плате.

Сетевой трансформатор на выходное напряжение 2*9 вольт 100мА крепится в корпусе отдельно от печатной платы. Сетевое питание, в переносном варианте использования прибора, можно заменить на батарею типа «Крона» напряжением 9 вольт.

Литература:

  1. В.Коновалов «Зарядно-восстановительное устройство для Ni-Ca аккумуляторов» Радио №3 /2006 стр.53.
  2. В.Коновалов «Измеритель R-вн АБ» Радиомир №8.2004г. стр.14.
  3. В.Коновалов «Импульсная диагностика аккумуляторов». №7.2008г. стр.15
  4. Д.А.Хрусталёв «Аккумуляторы» г. Москва 2003г.
  5. И.П.Шелестов «Радиолюбителям полезные схемы» книга 5.
  6. Микросхемы для защиты литиевых аккумуляторов. Радио №8 2004 г. стр.49.
  7. Малогабаритные сетевые трансформаторы.Радио №8/2004 стр.44.
  8. И.Нечаев «Стабилизаторы напряжения с микросхемой КР142ЕН19А.» Радио №6.2000 стр.57.

Зарядное устройство для Android-смартфона: все, что нужно знать

В каких ситуациях можно спокойно заряжать гаджет через неоригинальное зарядное устройство, а когда лучше не рисковать?

Сейчас практически у каждого дома лежит по несколько зарядок: для смартфона, планшета, плеера и других гаджетов. В связи с этим у многих пользователей возникает вопрос: можно ли использовать неродную зарядку? Что будет, если использовать зарядку с планшета для смартфона? Чем опасны китайские аналоги?

Наша обзорная статья постарается ответить на все вопросы и развеять популярные мифы.

Виды зарядок и разъемов

Для начала необходимо разобраться, с какими типами зарядок для смартфона и планшета мы чаще всего сталкиваемся в повседневной жизни:

  • MicroUSB. Пожалуй, наиболее распространенный разъем, применяемый для питания мобильных девайсов. Он используется различными производителями на смартфонах и планшетах, работающих под управление программных платформ Android и Windows Phone.
  • Lightning. Особый 8-контактный разъем, который применяется компанией Apple в линейках iPhone, iPad Pro, iPad Mini, iPod Nano и iPod Touch.
  • USB Type-C. Симметричный разъем позволяет не задумываться, какой стороной штекера или кабеля нужно вставлять шнур в разъем, и немного упрощает нашу жизнь. Кроме того, USB Type-C предоставляет более высокую передачу данных и возможность передачи энергии мощностью до 100 Вт, что делает его удобным не только в отношении смартфонов и планшетов, но и более крупных аппаратов — ноутбуков или мониторов. USB Type-C уже начинает «входить в моду», и все больше мобильных производителей оснащают гаджеты новым разъемом вместо microUSB. Подробности читайте здесь.
  • Ноутбуки. Единого стандарта для зарядного устройства ноутбуков пока не существует (возможно, в будущем им станет именно универсальный USB Type-C), поэтому различные модели используют разные разъемы в зависимости от производителя.

Большинство мобильных гаджетов используют одинаковые разъемы, чаще всего ими оказываются MicroUSB и USB Type-C, если речь идет о смартфонах и планшетах на Android. Иногда возникают ситуации, когда под рукой просто нет необходимого зарядного устройства, но использовать неродной блок питания не всегда безопасно.

Характеристики зарядных устройств

Для начала нужно определить главные характеристики любой зарядки для смартфона — речь идет о блоке (адаптере) питания, который вставляется в розетку. В зависимости от емкости аккумулятора, типа девайса и других факторов зарядные блоки различаются по своим характеристикам, которые мы должны были изучать еще на уроках физики.

Зарядное устройство от планшета Samsung на 2.0A

На каждом нормальном адаптере питания есть определенная маркировка с указание технических характеристик. Она пригодится в том случае, если придется постоянно питать смартфон от неродной/неоригинальной зарядки.

Еще раз оговоримся: если речь идет о единичных случаях применения неоригинальных приборов, то ничего страшного не случится. Если же вы собираетесь использовать их постоянно, обязательно изучите статью.

На блоках питания производители обязательно оставляют свой логотип, ставят различные маркеры, значки сертификации и ГОСТа, а также указывают действительно полезную информацию:

  • Интервал напряжения электрического тока: как правило, 100-240V (вольт).
  • Частота: на всех наших блоках 50-60Hz.
  • Output (выход) — главная характеристика адаптера питания, обычно выглядит так (5.0V — 1.0A) или так (5.0V — 2.0A).

Остановимся на последней характеристике подробнее. 5.0V — стандартный показатель, но значение силы тока бывает разным в зависимости от адаптера и гаджета, который им заряжается. Как правило, сила тока на блоках питания составляет 1.0A (для смартфонов) или 2.0A (для планшетов) . Бывают случаи, когда сила тока составляет, например, 0.85A, 2.1A, 1.5A.

Зарядное устройство для смартфона Sony на 0.85A (850mA)

Неоригинальные зарядные устройства

Зарядное устройство с большей силой тока . Если сила тока превышает показатель, потребляемый вашим гаджетом, ничего страшного произойти не должно. Дело в том, что литий-ионный аккумулятор оборудован специальной защитной платой, которая предотвращает перезаряд/переразряд, а иногда даже короткое замыкание. Более того, современные смартфоны оснащены контроллерами питания, которые не позволяют им принимать ток большей силы, чем необходим данной батарее.

Зарядное устройство от смартфона Huawei на 1.0A

Несмотря на эту защиту, заряжать гаджет от блока питания с более высоким показателем силы тока (А) нежелательно, поскольку опыт и форумы говорят о том, что телефон сильно нагревается, а батарея быстрее выходит из строя.

Зарядное устройство с меньшей силой тока . Специалисты не рекомендуют использовать более слабую зарядку. В таком случае аккумулятор будет запрашивать больше энергии, которое зарядное устройство обеспечить не может. Это может привести к перегреву как блока, так и гаджета, а иногда даже к короткому замыканию и возгоранию.

Зарядное устройство для планшета ASUS Nexus 7 на 2.0A

Зарядка от другого производителя . Многие пользователи жалуются, что при использовании китайского зарядного устройства с аналогичными силой тока и напряжением процесс занимает больше времени, чем требуется при применении оригинального зарядника.

Зарядное устройство для iPhone 5/5S на 1.0A

Проблема в том, что у разных мобильных производителей нет общепринятого стандарта кодирования нагрузочной способности блока питания. Из-за этого гаджет одного бренда не всегда «понимает» зарядку, изготовленную на заводе другой компании. В таком случае процесс зарядки осуществляется в безопасном режиме 500 mA (0,5A) и намного медленнее, что также может привести к перегреву. Бывают ситуации, когда устройство вообще не распознает подключаемый к нему кабель как зарядку.

Вывод. Рекомендуем применять родное зарядное устройство или официально совместимое с ним от известного производителя (выбрать можно на Яндекс.Маркете). Конечно, в непредвиденных ситуациях можно сделать исключение, но не стоит делать это регулярно. Также изучите и примите к сведению правила зарядки смартфонов.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: