Что такое датчик импульсов в автомобиле?

Устройство бесконтактной системы зажигания

Бесконтактная система зажигания появилась благодаря развитию контактно-транзисторной системы. Отличие бесконтактной системы зажигания состоит замене контактного прерывателя на бесконтактный датчик.

Преимущества бесконтактной системы зажигания

Использование бесконтактной системы зажигания на автомобиле позволило повысить мощность, добиться более качественного сгорания горючей смеси, что не только позволило снизить расход, но и уменьшить выброс вредных веществ в атмосферу.

Устройство бесконтактной системы зажигания

1 — Свечи зажигания; 2 — датчик-распределитель; 3 – распределитель; 4 — датчик импульсов; 5 – коммутатор; 6 – катушка зажигания; 7 — монтажный блок; 8 — реле зажигания; 9 — выключатель зажигания; А — к клемме генератора.

Бесконтактная система состоит из следующих элементов:

  • источник питания;
  • выключатель зажигания ;
  • датчик импульсов;
  • транзисторный коммутатор;
  • катушка зажигания;
  • распределитель ;
  • свечи зажигания.

Общее устройство бесконтактной системы зажигания напоминает строение контактной системы зажигания. Распределитель соединяется со свечами и катушкой зажигания при помощи высоковольтных проводов. Также в бесконтактной системе имеется датчик импульсов и транзисторный коммутатор.

Датчик импульсов служит для создания электро- импульсов низкого напряжения. Различают несколько датчиков импульсов: датчик Холла, индуктивный датчик и оптический.

В бесконтактной системе зажигания свое применение нашел датчик Холла (где под воздействием магнитного поля возникает поперечное напряжение в пластине проводника). Датчик Холла имеет не сложную конструкцию и состоит из постоянного магнита, полупроводниковой пластины, микросхемы и обтюратора (стального экрана).

В стальном экране имеется отверстие, через которое датчик пропускает магнитное поле, вследствие чего в полупроводниковой пластине возникает напряжение. Стальной экран, в свою очередь, не пропускает магнитное поле, и напряжение на полупроводниковой пластине не возникает. Такое своеобразное чередование прорезей в стальном экране содействует созданию импульсов низкого напряжения.

Датчик распределитель — это устройство, в котором объединены датчик импульсов с распределителем. Датчик-распределитель напоминает прерыватель-распределитель, и также как он приводится в действие от коленчатого вала.

Транзисторный коммутатор предназначен для прерывания тока в первичной обмотке катушки зажигания в моменты сигналов датчика импульсов. Прерывание тока происходит за счет срабатывания выходного транзистора.

Как работает бесконтактная система зажигания

Датчик-распределитель приводится в действие от вращения коленчатого вала, формируя импульсы низкого напряжения, которые передает на транзисторный коммутатор. Коммутатор, в свою очередь создает импульсы тока в первичной обмотке катушки зажигания. Когда ток прерывается, индуцируется ток высокого напряжения во вторичной обмотке катушки зажигания, после чего ток высокого напряжения подается на центральный контакт распределителя. В зависимости от порядка работы цилиндров двигателя ток высокого напряжения распределяется по проводам высокого напряжения на свечи зажигания. Свечи зажигания осуществляют воспламенение горючей смеси.

Когда число оборотов коленчатого вала растет, за регулировку угла опережения зажигания отвечает центробежный регулятор опережения зажигания. При изменении режимов работы двигателя регулирование угла опережения зажигания производится вакуумным регулятором опережения зажигания.

Импульсный датчик в системе зажигания

Основная задача импульсных датчиков системы зажигания — обеспечить синхронизацию воспламенения топливо-воздушной смеси с движением поршней в цилиндрах.

История использования импульсного датчика

Бесконтактные системы зажигания, составной частью которых являются импульсные датчики, нашли широкое применение в автомобилях в начале восьмидесятых годов прошлого века. До этого они активно использовались в системах зажигания мотоциклетных и лодочных моторах. В автомобили зарубежного производства системы бесконтактного зажигания с датчиком-распределителем устанавливали относительно недолго, приблизительно с начала и до конца 80-х годов. С началом эпохи инжекторных двигателей их сменили микропроцессорные системы управления зажиганием.

Роль импульсного датчика в системе зажигания

Импульсный датчик – один из ключевых компонентов бесконтактной системы зажигания. Устанавливается датчик в непосредственной близости от приводного вала распределителя системы зажигания и отслеживает скорость его вращения. Чем быстрее вращается вал, тем чаще датчик передает электрические импульсы низкого напряжения на коммутатор, который генерирует сигналы возбуждения для первичной обмотки катушки зажигания.

В современной системе контроля за работой двигателя применяется несколько импульсных датчиков. Они отличаются внешним видом, но не конструкцией.

Вне зависимости от частоты вращения вала, смесь в цилиндрах должна воспламеняться именно в тот момент, когда это нужно, то есть когда поршень приближается к верхней мертвой точке.

Устройство и принцип работы импульсного датчика

Абсолютное большинство импульсных датчиков, применяющихся в системах зажигания, относятся к трем типам – индукционные, оптические и магнитоэлектрические (на основе эффекта Холла). Последние настолько распространены, что термин «датчик Холла» нередко применяется как общее определение генераторов импульсов, что не совсем правильно.

Российские автолюбители впервые столкнулись с датчиком Холла в системе контроля за работой зажигания ВАЗ 2105

Принцип работы датчика Холла основан на изменении проводимости специального полупроводникового материала под влиянием постоянного магнитного поля. Как правило, источник поля (постоянный магнит) и полупроводниковый элемент зафиксированы неподвижно и разделены шторкой с проемами – обтюратором. Обтюратор закреплен на валу распределителя и вращается вместе с ним. В моменты, когда шторка обтюратора оказывается напротив полупроводникового элемента, магнитное поле прерывается. Электрические импульсы формируются за счет чередования периодов наличия и отсутствия поля.

Работа индукционного генератора импульсов, как понятно из названия, основана на явлении электромагнитной индукции. Датчик состоит из постоянного электромагнита с обмоткой и зубчатого диска. При вращении диска магнитное поле замыкается либо через зуб, либо через впадину. Таким образом, магнитный поток, проходящий через обмотку, то возрастает, то снижается.

Эффект Холла использован в принципе действия ракетных двигателей летательных аппаратов, предназначенных для исследования дальнего космоса

Оптические датчики импульсов работают за счет прерывания шторками обтюратора инфракрасного луча, направленного на фототранзистор.

Вопросы эксплуатации импульсных датчиков

Как любой электронный компонент, не имеющий движущихся частей, сам по себе импульсный датчик практически вечен. При возникновении проблем в работе системы зажигания его диагностикой стоит заняться в последнюю очередь. Для обеспечения надежной работы генератора импульсов достаточно следить за чистотой и целостностью приходящего на него разъема. Если же подозрения по поводу исправности импульсного датчика все-таки возникают – достаточно присоединить к нему вольтметр и провернуть коленвал. Отсутствие перепадов напряжения на выходе будет однозначно свидетельствовать о выходе детали из строя.

Датчики Холла: принцип работы, типы, применение, как проверить

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

Читайте также  Как подкрасить царапины на автомобиле своими руками?

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.

Внешний вид цифрового датчика Холла

Как правило, большинство датчиков представляет собой компонент с тремя выводами, на два из которых подается двух- или однополярное питание, а третий является сигнальным.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.
https://www.youtube.com/watch?v=fmLs9WsKx3I

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.

Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ

  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.
Читайте также  Нужна ли путевка на легковой служебный автомобиль?

Что такое датчик импульсов в автомобиле?

ЧАСТЬ I. ДАТЧИКИ ИНЖЕКТОРНЫХ И КАРБЮРАТОРНЫХ АВТОМОБИЛЕЙ

ДПДЗ (Датчик Положения Дроссельной Заслонки)

Датчик положения дроссельной заслонки(ДПДЗ) в СУД служит для определения степени и скорости открытия дроссельной заслонки. Выходное напряжение ДПДЗ изменяется в зависимости от нажатия педали акселератора и равно 0 , 3 – 4 , 8 В. В состоянии покоя это напряжение составляет 0 , 3 – 0 , 6 В, это соответствует 0 % открытия дроссельной заслонки.

Эталон. Датчик ОК

Неисправные датчики. Осциллограммы открытия дросселя

Открытие неисправного датчика

Осциллограммы закрытия неисправного датчика

Состояние покоя неисправного датчика

ДПКВ (Датчик Положения Коленчатого Вала)

ДПКВ в ЭСУД служит для определения положения и частоты вращения коленвала для осуществления общей синхронизации системы впрыска. Шкив коленвала имеет 58 зубцов. Точкой отсчета являются два пропущенных зубца на шкиве коленвала. На осциллограмме это место выглядит как резкий скачок напряжения вниз, а потом вверх. При исправном ДПКВ его минимальное напряжение должно быть не менее 6 В, максимальное достигает до 250 В.

ДМРВ (Датчик Массового Расхода Воздуха, MAF-Sensor)


ДМРВ является датчиком термоанемометрического типа. Устанавливается между воздушным фильтром и дроссельным патрубком. Сигнал ДМРВ представляет собой напряжение постоянного тока, изменяющееся в диапазоне от 1 до 5 В, величина которого зависит от количества воздуха, проходящего через датчик.

Эталон. ОК Полуживой датчик Неисправный
датчик

ДК (Датчик Кислорода, он же Lambda Zond)

Датчик кислорода служит для правильного определения соотношения воздух-топливо поступающего в цилиндры. В зависимости от напряжения кислородного датчика, ЭБУ корректирует параметры топливо-воздушной смеси по заложенной в нем программе управления. Если ЭБУ определяет топливо – воздушную смесь(ТВС) как бедную, что соответствует низкому выходному напряжению, то он увеличивает время открытого состояния форсунок, если ТВС богатая – высокое выходное напряжение – уменьшает время. При исправном датчике кислорода и СУД диапазон выходного напряжения равен 0 , 05 – 0 , 9 В.

ДФ (Датчик ФАЗ)

Датчик фаз устанавливается на двигателе ВАЗ- 2112 в верхней части головки блока цилиндров за шкивом впускного распредвала. На двигателях 2111 (Евро‑ 2 ) на заглушке справой стороны. В основу работы датчика заложен эффект Холла. На шкиве впускного распредвала расположен задающий диск с прорезью. Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра. Контроллер посылает на датчик фаз опорное напряжение 12 В. Напряжение на выходе датчика фаз циклически меняется от значения близкого к 0 (при прохождении прорези задающего диска впускного распредвала через датчик) до напряжения близкого напряжению АКБ (при прохождении через датчик кромки задающего диска). Таким образом при работе двигателя датчик фаз выдает на контроллер импульсный сигнал синхронизирующий впрыск топлива с открытием впускных клапанов. Сигналы у двигателя 2112 и 2111 (Евро‑ 2 ) совершенно одинаковые.

ДД (Датчик Детонации, Knock Sensor)

Широкополосный датчик детонации пьезокерамического типа устанавливается на блоке двигателя. Во время работы двигателя датчик генерирует сигнал напряжения переменного тока с частотой и амплитудой зависящей от частоты и амплитуды вибрации той части двигателя, на которой установлен датчик. При возникновении детонации амплитуда вибраций определенной частоты повышается, что приводит к увеличению амплитуды выходного сигнала ДД. Контроллер считывает этот сигнал (только в определенных положениях КВ, т.н «окно обнаружения детонациии»), фильтрует, усредняет и на основе полученных данных и корректирует угол опережения зажигания для гашения детонации.

Сигнал ЭБУ МП‑ 7 . 0

ДТОЖ (Датчик температуры охлаждающей жидкости)

Датчик температуры в СУД служит для определения температурного состояния двигателя. По его сигналу ЭБУ при запуске выставляет необходимое количество шагов РХХ, регулирует топливоподачу. Внутри датчика находится термистором с «отрицательным температурным коэффициентом» – при нагреве его сопротивление уменьшается. Высокая температура охлаждающей жидкости вызывает низкое сопротивление ( 70 Ом + 2 % при 130 °С), а низкая температура дает высокое сопротивление ( 100700 Ом ± 2 % при ‑ 40 °С). Контроллер подает на датчик температуры охлаждающей жидкости напряжение 5 В через резистор с постоянным сопротивлением, находящимся внутри контроллера. Температуру охлаждающей жидкости контроллер рассчитывает по падению напряжения на датчике, имеющем переменное сопротивление. Падение напряжения большое на холодном двигателе, и низкое – на прогретом. Соответственно, на холодном двигателе напряжение на датчике выше, на горячем – ниже. Это хорошо видно по осциллограммам.

ДС (Датчик скорости, Speed Sensor)

Датчик скорости служит для получении информации о скорости движения автомобиля для приборной панели и СУД, в которой используется для определения режимов движения автомобиля – ХХ и ПХХ.

В основе его работы заложен эффект Холла. Сигнал, получаемый ЭБУ с датчика скорости, импульсный и зависит от скорости движения автомобил я.

Датчик Холла

Датчик Холла в распределителе зажигания служит для своевременной подачи управляющих импульсов в коммутатор. С выхода датчика снимается напряжение, если в его зазоре находится стальной экран. Если экрана в зазоре нет, то напряжение на выходе датчика близко к нулю.

Чертова дюжина автомобильных датчиков: 7 всегда врут и еще 6 — привирают

В любом автомобиле — масса всевозможных датчиков. И практически все они врут! Одни — всегда, другие начинают обманывать с возрастом. Не верите?

Врут всегда

1. Датчик температуры двигателя

Практически всегда показывает температуру не двигателя, а охлаждающей жидкости. Устанавливается очень часто не в головку блока цилиндров (а это — самое горячее место двигателя!), а в патрубок, прикрепленный к головке. Мало того, этот патрубок часто выполняют не металлическим, а из термостойкой пластмассы. А теперь представим себе, что антифриз вообще вытек из системы. Двигатель нагревается до высоких температур, а датчик меряет температуру в пустом пластиковом патрубке… И что от этого толку?

Справедливости ради отметим, что на некоторых моторах датчик ввернут в тело головки блока цилиндров. Пример — двигатели задне- и полноприводных ВАЗов. А еще встречался датчик, измерявший непосредственно температуру ГБЦ. Так, на фордовских моторах Zetec-Е датчик вворачивался в гнездо головки с заданным моментом и «чувствовал» температуру за счет непосредственного контакта носика с металлом головки. Вот он действительно показывал температуру двигателя — правда, только в одной точке.

2. Датчик скорости

Речь, понятное дело, о спидометре. Он врет, что называется, по ГОСТу. Врет всегда, причем на стандартных шинах — и это приветствуется! Дело в том, что любой прибор изначально имеет погрешность измерений — как в плюс, так и в минус. Поэтому «чайник» может превысить скорость, сам того не подозревая. А любители нарушать скоростной режим всегда готовы переложить собственную вину на спидометр: мол, ничего я не превышал — по прибору было всего лишь 60!

Чтобы предотвратить даже теоретическую возможность «нечаянного» превышения скорости, спидометр на заводе регулируют так, чтобы он никогда не занижал истинного значения скорости. Именно поэтому он и показывает ее с небольшим превышением. Кстати, в электронный блок управления двигателем отсылается обычно правильное значение скорости.

Любое самовольное изменение диаметра колес мгновенно скажется на показаниях спидометра и одометра. Но такая переделка запрещена законом.

3. Датчик кислорода

Казалось бы, такой прогрессивный, весь из себя экологичный прибамбас. Но — нет. Достаточно неравномерного распределения воздуха либо топлива по цилиндрам, как он начинает врать. Где-то льет форсунка, где-то негерметичен впускной трубопровод, где-то барахлит свеча или упала компрессия, ну а в среднем по больнице всё может казаться хорошо. Даже у нового автомобиля не может быть четырех абсолютно одинаковых цилиндров. И лямбда-зонд, по-хорошему, должен быть у каждого цилиндра свой, чтобы корректировать состав смеси только в нем. Такие моторы встречались еще в девяностых годах прошлого века, когда борьба за экологию только начиналась.

Читайте также  Для чего служит карбюратор в автомобиле?

А еще нормальной работе датчика может помешать человек. Неквалифицированные ремонтники могут испортить кислородный датчик, например, применив при сборке мотора силиконовые герметики, которые его «отравят». И уж совсем невеселая жизнь у второго (диагностического) датчика кислорода. Если автомобиль уже в годах и каталитический нейтрализатор вырезан, то его все время норовят обмануть. Кто-то ставит обманки с дросселирующими отверстиями, кто-то — с кусочками нейтрализаторов. А иные норовят отключить его программно.

4. Датчик давления масла

Оптимист, каких мало. Реагирует на давление масла меньше, чем 0,5 бара, включая красную контрольную лампу аварийного давления. И только. Он не способен предупредить водителя о том, что даже на больших оборотах двигателя давление всего лишь 0,6 бара. Он показывает, что всё ОК. Жаль, но подшипники коленвала придерживаются иного мнения. Впрочем, на современных машинах датчики давления масла всё чаще становятся «умными».

5. Датчик детонации

Ситуация — примерно как с датчиком кислорода. Работает, но не идеально. Например, на четырехцилиндровом моторе этот датчик ставится между вторым и третьим цилиндрами. Конечно, вибрация в металле распространяется хорошо, однако ближайшие к датчику цилиндры «слышны» лучше. Поэтому датчик чувствует разные цилиндры по-разному. Если во Владивостоке стукнуть по рельсу Транссиба, то в Москве этого не услышат…

Отметим, что на V‑образных двигателях сенсоров детонации ставят два — каждый на свой ряд цилиндров. Так им лучше слышно.

6. Датчик забортной температуры

Производители автомобилей устанавливают эти датчики в разных местах. Частенько — в районе переднего бампера. Но там датчик греется от дороги и, самое главное, от двигателя. Рядом — раскаленные радиаторы, которых может быть до пяти штук. Датчик греется от машины и врет. Понятно, что это далеко не самый главный прибор в автомобиле, но вранье неприятно всегда.

Второе популярное место для датчика температуры — в корпусе правого бокового зеркала. Порой в солнечный день ехать на восток теплее, чем на запад…

7. Датчик температуры в салоне

Если он один, то далеко не всегда работает корректно, будучи не в состоянии дать интегральную оценку температуры. Нужно учитывать и солнечную радиацию, и количество пассажиров. Недаром в премиальных автомобилях климат-контроль может работать с пятью и более датчиками температуры в салоне.

Врут от старости

1. Датчик положения коленвала

ДПКВ может получать импульсы от шкива коленчатого вала, маховика либо от задающего диска, установленного на коленвалу внутри двигателя. И везде к нему клеится железосодержащая стружка, в результате чего со временем он начинает врать. Сигнал становится нечетким, с перебоями, что снижает показатели двигателя: ведь это один из самых главных датчиков системы впрыска. Многие моторы без него вообще не работают.

2. Датчик положения распредвала

ДПРВ обеспечивает фазированный впрыск на простых моторах и определяет правильность работы фазовращателей, если таковые установлены. Сигнал становится некорректным при сильной вытяжке цепи и плохо работающих фазовращателях.

3. Датчик массового расхода воздуха

ДМРВ начинает врать при зарастании пылью. Особенно часто это наблюдается при некорректной замене или неправильной установке воздушного фильтра.

4. Датчик положения дроссельной заслонки

Любители вазовских впрысковых автомобилей помнят проблемы с этими датчиками. А все потому, что ДПДЗ — переменный резистор, отслеживающий угол поворота дроссельной заслонки. Дорожки изнашиваются — датчик лжет.

5. Датчик давления и температуры во впускном трубопроводе

Этот датчик врет при негерметичности впускного трубопровода. Такое случается при усохших прокладках, соскочивших шлангах, а также при обрастании пылью из-за негерметичности впускного тракта.

6. Датчики положения педалей тормоза и сцепления

Вроде бы — простейшие концевые выключатели, но на отечественных автомобилях они часто ломаются. Еще их повреждают владельцы, неграмотно установившие блокираторы рулевого вала. Запоры ломают датчики.

И еще про вранье

Датчик неровной дороги

Около двадцати лет назад его пытались внедрять на вазовских автомобилях с системой впрыска топлива. Он должен был помогать ЭБУ отличать колебания угловой частоты вращения коленвала, передающиеся по трансмиссии при езде по сильно неровной дороге, от колебаний, вызванных неравномерностью работы других систем (например, пропуски зажигания). В итоге получилась экзотика, которая показывала непонятно что…

Датчик давления в системе кондиционирования

Самый демократичный датчик. У многих автомобилей он разрешает включение кондиционера, даже если хладагента совсем немного. И только когда хладагент закончится, он не дает включиться компрессору. Живой пример — редакционный Ларгус. Девять лет, 135 тысяч км пробега без единой заправки кондиционера, а он до сих пор включается… Правда, и холодит кондиционер еле-еле.

Кому верить?

Датчики, которые начинают дурить от старости, надо менять. К сомнительным показаниям термометров — как наружных, так и внутрисалонных — относитесь со снисходительностью: как умеют, так и работают. Что касается датчиков, которые волей разработчиков просто не могут работать лучше, как из-за собственного несовершенства, так и вследствие их неудачной установки, — то от нас с вами тут ничего не зависит. Остается смириться. С такими датчиками пусть общаются «взятчики», то есть электронные блоки управления. Глядишь, меж собой разберутся.

  • 13 самых тревожных пиктограмм на приборной панели — тут.
  • Чтобы перевозить велосипеды в соответствии с требованиями ПДД, рассмотрите велокрепление на ТСУ. Дублируется номерной знак и световые сигналы! Не хватает места в салоне авто? Приезжайте в наш магазин — подберем недорогой багажник на крышу, посоветуем автобокс.
  • Хотите пройти техосмотр без проблем? Тогда вам нужна качественная аптечка «За рулем» с оптимальным составом и лучший огнетушитель по результатам наших тестов. Идеальным дополнением станет набор автомобилиста в удобной сумке.
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: